
A Manual for Practicing
Threat Modeling
to Assess and Fortify
Open Source Security

Open
and Secure

Open and Secure — A Manual for Practicing Threat Modeling to Assess and Fortify Open Source Security

by Justin Cappos in collaboration with Andrés Vega

and feedback and support of the CNCF Security Technical Advisory Group

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Disclaimer: This book is designed to provide helpful information on the topics discussed herein, which include

software development and the architecture and design of software security. It is specifically tailored for main-

tainers and consumers of open source software.

All content in this book, such as text, graphics, images, and references to third-party materials, is for informa-

tional and educational purposes only. The author and publisher of this book shall not be liable or responsible

for any loss or damage allegedly arising from any information or suggestions found within this book.

First Edition 2023

Digital edition

Acknowledgements

This document would not be possible without the effort from a number of other parties who helped this

work tremendously. Among those who contributed to the text directly, Justin Cappos would like to single

out Ragashree Shekar for her help with commentary, editing and diagrams.

Other members of the cloud native security community made valuable contributions to this work in the

form of commentary and/or edits. This includes Marco De Benedictis, Jack Kelly, Dan Lorenc, Andrew

Martin, Ash Narkar, and Ann Wallace.

We also appreciate the feedback from our reviewers, including AKS and all other members of the TAG-

Security community who provided feedback.

Finally, we would like to thank the amazing Linux Foundation community, especially those within the CNCF.

The support and attention they have given us has helped us and has also had shaped the face of cloud native

computing, providing everyone with an amazing set of free, open technologies.

In “Open and Secure,” you’ll embark on the journey to acquire and practice threat modeling—an essential skill for

those tasked with developing and reviewing security architectures. This book offers a curated blend of insights

and methods aimed at fortifying software architecture against threats for open source maintainers and providing

end users with a deeper understanding of the software they rely on. With a practical framework rooted in es-

tablished knowledge, the book equips its readers to evaluate and bolster security with confidence and precision.

The depth of the content reflects Justin Cappos’s extensive background. Justin’s tenure as both a security practi-

tioner and an educator has not only shaped his perspective but has also influenced some of the most significant

contributors to the security industry. His alumni include makers of the most widespread infrastructure software

in the world and the most sought-after security professionals in the field, underlining the breadth and impact of

his expertise.

While the book elaborates on the structured assessment process pioneered by Justin through the CNCF Security

Technical Advisory Group, highlighting assessments of scrutinized projects and how they have elevated security

standards and driven improvements, it also speaks to a wider audience. The approach presented transcends

project boundaries, proving its value across the interconnections of services underpinning modern application

platforms. Its principles, especially resonant for cloud-native environments, are universally applicable, offering

valuable insights regardless of the technology stack..

The book’s strength lies in its practical application—instilling the rigor of adversarial thinking. It challenges the

notion that security is an onerous task, instead presenting it as an intellectual pursuit that, when mastered, yields

the gratifying clarity of deciding and prioritizing for better security with the added benefit of being able to explain

and demonstrate the reasoning of those decisions to others. Gaining the ability to model risk and use past or re-

hearsed experience to imagine outcomes offers a significant advantage in making decisions about future actions.

Moreover, the book’s reach extends to enhancing software security and operational postures throughout the

software lifecycle. It equips you with the means to substantiate the robustness of security aspects, preparing you

with materials that facilitate dialogue with audit and compliance counterparts. This readiness effectively short-

ens the approval times for new technology, speeds adoption, and demonstrates compliance with controls and

accepted practices.

foreword

Rejecting a one-size-fits-all approach, “Open and Secure” doesn’t offer recipes. Instead, it provides the insight

to define your security objectives and the adaptability to apply a suite of tools to achieve specific outcomes suited

to your context.

In the fast-evolving world of technology, fully grasping a system’s security against the backdrop of a changing

threat landscape is challenging. “Open and Secure” delivers a toolkit for constructing a cognitive map of this

landscape, guiding you to clarity and mastery over what was once misunderstood or unfamiliar, allowing you

to chart the course and navigate with assurance. This book is like a headlight, illuminating the intricacies of

security, powered by the knowledge of those who have previously tackled these challenges and shared their hard-

earned wisdom.

Andrés Vega

CNCF Security Technical Advisory Group

This book describes security assessments, including what a security assessment is, how it differs from a security

audit, how to perform a security assessment, and how to use a completed assessment.

This book is heavily informed by the Security Assessment process that the CNCF Security TAG uses to assess

cloud native security projects as part of the Linux Foundation process. However, the process used to create this

book drew on many years of experience from analyzing and evaluating security products across a wide array of

domains. The examples in this text draw from both real world (non-technical) anecdotes and a variety of techni-

cal examples from Linux Foundation projects in the cloud native space.

You, dear reader, are welcomed to not just read this book, but experience it. Feel free to pause to consider the

assessment examples yourself. You will internalize more by attempting these exercises yourself first. As with

many things in security there is often not one “correct answer”, despite there being infinitely many wrong ones.

If you have feedback on this book or want the community’s thoughts on a different take you have, feel free to reach

out on the CNCF slack on the #security-assessment-book channel.

Happy Reading!

Preface

Table
Of Contents

01

03

02

04

Introduction

Security Basics

Security Assessments
vs Security Audits

Threat Modeling

05

07

06

So there are risks... How
do we deal with them?

Concluding Thoughts

TAG Security
Assessments

In
t
r

o
d

u
c
t
io

n

here may even be hundreds of players all trying to

defeat you at once. It’s clear that this situation is a

much more worrisome and dangerous one for your

poor chess program. It is hard to quantify or reason

about its win rate in this case because you don’t know

what the human opponent will do to counter you.

One interesting thing to consider about this example

is that technically any moves that the human player

makes against you, could also have been made by the

random computer player. What matters here is that

a human will tend to act to make events that would be

very unlikely to happen randomly, occur in just the

ways that cause the most harm.

Being able to reason about which defensive mechanisms

will restrict an intelligent attacker and what avenues

of attack are likely to be effective is at the heart of

understanding computer security.

Security is perhaps the most misunderstood

field of computing. In part this is because many

properties of it are hard to quantify. One of the

key reasons is the existence of an intelligent

adversary, which is fundamental to computer

security.

To understand a bit why, suppose you had never

played the game of chess before, but you knew

how the pieces move. Now suppose that you

were playing against a computer that would

randomly choose and make a legal move with

one of its pieces. You could pretty quickly come

up with simple strategies that would make you

overwhelmingly likely to be a winning chess

player. You could even write this into a program

which would win overwhelmingly often. If you

were mathematically inclined, you could rank

how well different algorithms do by their expected

win percentages against this random adversary.

This is conceptually similar to how one can think

about reliability; failure probabilities in a random

case.

Now, consider that you instead play against human

opponents who can intelligently choose which

pieces to move and where. All of the sudden all

of your win percentages and strategies are very

unlikely to be relevant. Even worse, suppose that

those human opponents may have been studying

your way of playing and devising strategies to

counter your program!

Context

So, armed with some context, your next question

may be, why am I reading this book and what will

I learn? This book is meant for several different

audiences.

• A reader interested in learning about threat

modeling and security in general. To learn

about threat modeling and how to assess the

security of general projects, the majority of

the sections are highly relevant. Perhaps the

least relevant part are the portions of this book

that relate to the specifics of TAG-Security

Security Assessments (TSSA). However, these

sections can serve as an example of how to

implement some of the ideas in the rest of the

book in the cloud native space.

• A reader who wants to perform an assessment

for TAG-Security. To do so, you should read

most of the book. The sections describing how

to use an assessment and how to have your

project assessed effectively are less helpful,

but are still useful to read to understand the

process from those perspectives.

• A project maintainer who is preparing to have

their software assessed. Please do a quick

read of the main portion of the book before

diving into how to work with us on your self

assessment and the remainder of the process.

• Someone evaluating the security posture of a project

with a security assessment. You, the consumer of our

hard work, need to understand how best to benefit

from a security assessment. If you are looking at a

TSSA, the section on consuming TSSA assessments

is exactly what you need. If you have a more general

security assessment document, most of the lessons

there still apply. It may also be useful to read the

following section on Security Assessments and

Audits, to understand the difference and why you

should expect to see relatively few CVEs raised after

a security assessment versus a security audit.

How to use the
rest of this book

a
s
s
e
s
s
m

e
n

t
s

a
u

d
it

s
v

s

 When looking at security, there are different

levels at which you can do this. Roughly speaking, a

security assessment can be thought of as examining

the security architecture and posture of a software

project. While the tooling, implementation strategy,

deployment, etc. are important to a security

assessment, the assessment is often detached from

a specific deployment and the implementation

itself. It focuses more on whether a software project

as a whole is doing the sorts of things that lead to

security.

Let’s now consider an example security assessment

using a real world example of a bank called

TrashPanda Bank. TrashPanda Bank is a brick-and-

mortar bank without any computers, which allows

one to focus on non-technical attacks and defenses.

A security assessment would look at a TrashPanda’s

security by examining the blueprints, vault types,

alarm systems, accounting practices, policies for

vetting employees, etc.

In contrast a security audit looks for instances

of specific flaws in a security project. So, for a

computing project, the goal of an audit is to find

specific attack cases / issues in the source code that

could enable an attacker to do something malicious.

To return to TrashPanda Bank, a security audit of

this would look quite different from an assessment.

The auditor might try to pick locks, actually smash a

chisel into the mortar around a safe to see if it can be

removed, understand if the gym using the floor above

the bank could enable one to smash in through the

vault’s ceiling, or figure out the timing of the security

guard bathroom breaks to see if there is a moment

they can sneak past undetected. In other words, these

look for problems that result in specific, detailed flaws

in implementation and quirks of the deployment that

cause weaknesses an attacker can exploit.

One final note is that the terms “audit” and

“assessment” are not universally used this way in

all literature. So if you read them elsewhere, please

consult the author’s definition.

Security
Assessments vs
Security Audits

Pros and Cons

There are merits to both audits and assessments. As

a result, the best security firms will do both sorts of

analysis (to different levels of detail) on a software

project.

Assessments tend to be better at identifying more

systemic problems, like design problems or issues

in the procedures used to make software. These

problems are extremely important to fix because they

are often the cause of security issues. They can also

increase the impact, turning a minor problem into a

major one.

Assessments are often essential for an organization to

tell if a software project is a good one to rely on. The

way in which things are fixed and the “quality” of the

software project are exhibited as part of the

several different security aspects. In contrast, a security

auditor may find out that Eve in accounting has been

embezzling money, which then may lead the firm to fire

and prosecute her.

On the surface, the audit sounds more pertinent at any

particular moment because it has an actual example of

a serious problem. The downside stems from the fact

that an audit focuses on what someone found at that

moment, it is even the case that different audits may

lead to quite different results. For example, security

firm A’s audit may have caught Eve’s embezzling, while

security firm B’s audit finds out that Tom the teller has

a gambling problem and has been skimming deposits

(i.e., stealing cash when a deposit is made). The two

firms who did different audits found different problems,

which is expected. With audits, you really don’t know

of any underlying deficiencies other than the bugs they

found. In contrast, with a security assessment, you tend

to focus on macro-level concerns and procedures at

TrashPanda Bank. You may tighten up your personnel

controls, which may lead to Eve silently stopping her

behavior as she knows she would be caught and Tom

the teller taking a job at another bank. So, although

acting upon the results of an assessment may mitigate

or prevent these issues from arising, you may never

detect occurrences of a problem explicitly from an

assessment, only that there is a potential problem, or

if you do, you may not even associate them with the

security assessment. This makes the value of a security

assessment require more effort to quantify, such as

factoring reduction of structural risk and mitigation

of losses by reducing the likelihood and severity of a

negative outcome should problems occur.

assessment.

Assessments can be valid for a long period of time

(years) so long as the project does not make substantial

changes to how they make software. As such an

assessment better represents the project’s overall

health. In contrast, a security audit will instead

represent only a momentary snapshot of a project’s

set of vulnerabilities (often only a single release) and

only for the deployment scenarios considered.

Similarly, an assessment is general enough that some

properties (like the actors, actions, goals, etc.) will

directly translate over to multiple implementations

of the system in different languages and also will

likely translate to a wide array of deployment

environments. With an audit, bugs found in an audit

are often specific to an implementation (unless the

implementers looked at each other’s code and copied

them!).

Security audits are great for finding bugs in the project

today. Hence a project can often fix problems found

in an audit rather quickly. It is usually immediately

apparent that these bugs were impactful because

an auditor often provides an example exploit that

causes a security failure due to the bug. This looks

great to management as it is clear what value they

have derived from the security audit and patching

the bug.

To understand the difference between assessments

and audits consider the following cases for

TrashPanda Bank. The security assessment firm

says that you should implement better personnel

controls which the assessors claim will improve

looking relevance is limited. Future releases may

not benefit from these past audits due to new code

changes and emerging threats, emphasizing the

importance of security assessments that persist

in validity over a long period of time. Assessments

tend to be long lived, standing the test of time even

as projects develop new interfaces to support new

features, barring major refactors of the architecture.

Here is a list of sample third-party audits of CNCF

and LF projects (Specific version noted if available in

the report):

- Argo (2021)

- Argo (2022)

- Backstage v0.70.0 (2022)

- CoreDNS 1.1.1 (2018)

- CRI-O 1.24.0 (2022)

- Envoy ~ v1.6.0 (2018)

- Envoy ~ v1.14.0 (2021)

- etcd 3.4.3 (2020)

- Flux < 0.15.0 (2021)

- KubeEdge <=1.11.0 (2022)

- Linkerd (2019)

- Linkerd 2.11.1 (2022)

- Prometheus (2022)

- SPIFFE/SPIRE v0.12.0 (2021)

 - Tekton Pipelines, Triggers, and Dashboard (2022)

Simultaneous to TAG Security working on security

assessments over the last five years, the projects

in the ecosystem often undergo external scrutiny

from specialized firms such as NCC, Trail of Bits,

Cure53, Chainguard, and AdaLogics. These third-

party audits focus on the latest release at the point in

time complementing assessments by implementing

a diverse testing methodology that encompasses

both static and dynamic analysis. They inspect the

code for known vulnerabilities, identify potential

weaknesses in configuration settings, and review

language specific practices such as the use of

discouraged or deprecated functions.

Upon finding bugs or vulnerabilities, a period of

responsible disclosure follows, allowing the teams

to produce patches with the security fixes and issue

security advisories. Once the issues are addressed,

the findings and the corresponding reports are

released to the public, adding to a growing list of

audits.

These public reports serve a dual purpose: they

provide transparency for the remedial actions taken

by project teams and act as a compelling argument

for end-users to apply the latest upgrades. However,

their utility often does not extend far beyond

the release they pertain to. While they offer a

retrospective look at fixed issues, their forward-

Comparing and
Contrasting
Commentary by Andrés Vega

https://github.com/argoproj/argoproj/blob/4324729c1c9d3ea21d22afbf7378921826fd2529/docs/argo_security_final_report.pdf
https://github.com/argoproj/argoproj/blob/main/docs/argo_security_audit_2022.pdf
https://www.x41-dsec.de/static/reports/X41-Backstage-Audit-2022-Final-Report-PUBLIC.pdf
https://coredns.io/assets/DNS-01-report.pdf
https://ostif.org/wp-content/uploads/2022/06/CRI-O-audit-by-ada-logics-chainguard-ostif.pdf
https://ostif.org/wp-content/uploads/2022/06/CRI-O-audit-by-ada-logics-chainguard-ostif.pdf
https://github.com/envoyproxy/envoy/blob/main/docs/security/audit_cure53_2018.pdf
https://github.com/envoyproxy/envoy/blob/main/docs/security/audit_fuzzer_adalogics_2021.pdf
https://github.com/etcd-io/etcd/blob/main/security/SECURITY_AUDIT.pdf
https://fluxcd.io/FluxFinalReport-v1.1.pdf
https://github.com/kubeedge/community/blob/master/sig-security/sig-security-audit/KubeEdge-security-audit-2022.pdf
https://github.com/linkerd/linkerd2/blob/main/audits/2019/SECURITY_AUDIT.pdf
https://github.com/linkerd/linkerd2/blob/main/audits/2022/Linkerd%20-%20Final%20Report.pdf
https://cure53.de/pentest-report_prometheus.pdf
https://github.com/spiffe/spire/blob/main/doc/cure53-report.pdf
https://cd.foundation/wp-content/uploads/sites/78/2022/08/Tekton-Report-Public-Final.pdf
https://www.cncf.io/blog/2023/04/19/new-kubernetes-security-audit-complete-and-open-sourced/
https://www.cncf.io/blog/2023/04/19/new-kubernetes-security-audit-complete-and-open-sourced/

b
a

s
ic

s

Security Basics

There are so many foundational concepts and technologies you

need to understand to reason about security of a cloud native

application, that describing them well would require another

entire book’s worth of material. Rather than replicate that

material here, the reader is directed to resources that contain

this information. If you encounter an unfamiliar term in the

text, kindly take the time to look it up and understand it.

Most fundamentally, you should understand key concepts

like integrity, non-repudiation, privacy, authentication,

authorization, and trust. The Cloud Native Security Lexicon

has a quick overview of basic terms and concepts in computer

security which covers these items.

For encryption, there are a lot of concepts you need to

understand and cryptographic systems are very complex.

Fortunately, you really just need to understand how to use

them correctly and their strengths and weaknesses, instead

of why they were designed in the way that they were. You will

need to understand (at a minimum) public key cryptography,

secret key cryptography, secure hash functions, key length, key

distribution, root of trust, certificate formats (i.e., X.509), and

certificate authorities. Depending on what you are assessing,

understanding trust delegation, HMAC, post quantum

cryptography, transparency logs, forward secrecy, and similar

concepts may be useful.

For computational security on a system, you need a basic

understanding of access control. This means understanding

compartmentalization / isolation as it relates to the operating

system or container environment you are using. Access Control

Lists (ACL) systems, file / device permissions, su

(superuser) ability, system call filtering (seccomp),

and capability / tokens are all very important to

understand conceptually. Depending on your

environment, knowledge of HSMs (Hardware

Security Modules) and TPMs (Trusted Platform

Modules) may also be relevant.

critical
perspectives on
broad promises
Commentary by Justin Cappos

Beware of systems making broad promises due to

the use of blockchain, Web 3.0, or decentralization.

To date, the proponents of these systems have

claimed far greater benefits than what the core

technology has been able to deliver.

For example, a proof-of-work blockchain is

fundamentally a way to keep a distributed, append-

only log amongst a set of distributed computers

that don’t want to have a trusted centralized party.

It is extremely slow and computationally wasteful

compared to a centralized trusted server, but

there is no longer a single point of compromise.

That is, if you assume that the computational

nodes have a protocol that provides this property,

https://github.com/cncf/tag-security/blob/main/security-lexicon/cloud-native-security-lexicon.md

 that the protocol is implemented correctly, and that some

threshold (commonly 1/3 or 1/2) of the computational

power isn’t held by evil people, etc. It also, by itself, doesn’t

ensure that the information in the blockchain is actually

valid or useful.

Interestingly enough, a transparency log uses a lot of the

same mechanisms as a blockchain and thus has some

similar weaknesses. However, transparency logs currently

don’t have the same stigma in the security community in

part because the deployment environment and stakes are

different. There are large deployments of transparency

logs today but they are early enough in their lifecycle that

as a community, we really don’t fully understand how and

when these systems fail to provide adequate security in the

same way we do the other technologies in this section.

There is an additional set of things to understand around

user identity, authentication, and authorization. This

involves concepts like multi-factor authentication (also

called two-factor authentication), hardware tokens

(e.g., Yubikeys), and OIDC (a way to log in to a system

via authentication through a third party like Google or

Facebook). It is key to understand how users are identified

and how this is tied to logging events for auditing purposes.

The last important concept to understand is the

fundamental ways in which people design secure systems.

Usually, you can find security design flaws by looking for

situations that violate these principles and then reasoning

about what problem occurs as a result. So understanding

concepts like the principle of simplicity, least privilege,

fail-safe defaults, least common mechanism, minimizing

secrets, open design, complete mediation, and least

astonishment [Saltzer and Schroeder, The Protection of

Information in Computer Systems]

are really fundamental and things every person

thinking about security should internalize.

Note that these principles are not fundamental

“laws” of computer security that should never

be violated. They are guidelines that point to

situations which most of the time lead to security

problems if they are violated.

For example, the principle of simplicity indicates

that the simpler the component, the easier it is to

reason about it and thus secure it. Suppose that

TrashPanda bank’s system designer learns of this

and decides to remove the need to verify client

ID cards to simplify the system. Now anyone can

withdraw money from anyone else’s account,

trivially! This “simplification” has clearly made the

system’s security worse.

So, instead think about the principles when

looking at a design and reason if the security would

be better or worse if they were followed. Usually,

following the design principles will guide you

toward security.

Evaluating
Security Principles
in Practice: When
‘Simpler’ Does
Not Mean ‘More
Secure’
Commentary by Justin Cappos

http://Saltzer and Schroeder, The Protection of Information in Computer Systems
http://Saltzer and Schroeder, The Protection of Information in Computer Systems

t
h

r
e
a

t

m
o

d
e
l
in

g

t
h

r
e
a

t

A fundamental aspect of threat modeling is the abil-

ity to frame and understand the various scenarios in

which a system will operate. A key question that often

guides this understanding is, “What are the intend-

ed use cases of a system, and where should it not be

used?” This line of inquiry doesn’t just establish the

parameters within which a system is expected to per-

form but also helps to define the boundaries of its re-

liable operation.

Challenging yourself and your team to identify these

“out of scope” scenarios or non-uses can be revealing.

It prompts a closer examination of implicit assump-

tions and potential weaknesses. For instance, you could

consider a system you’re familiar with and ask, “What

would be the ‘submarine or outer space’’ equivalent for

your system?” Is syscall inspection suited for inspec-

tion of ingress traffic? Is a mutating admission web-

hook served at enforcing kernel security? This kind of

hypothetical questioning can uncover overlooked vul-

nerabilities and lead to a more robust design.

This exercise not only broadens the scope of tradi-

tional threat modeling but also encourages a proac-

tive approach to security. By contemplating extreme

‘out-of-scenario’ uses, we can better understand the

full range of risks a system may face and fortify it

against more than just the probable threats.

Security is one of the most critical properties

to have in computing today. Unfortunately, it is

also one of the most misunderstood. A common

mistake people make it to tout something as

“secure” or “insecure”. This doesn’t make a lot of

sense because it is missing an important context:

the scenario.

The scenario in many non-security real world

situations is something that is implicitly defined.

For example, if I say “my car is reliable’’, you can

assume that it almost certainly will not break

down on the way to work. However, you should

not expect that a “reliable” car would make a good

submarine or perform well on Mars. Performing

well on Mars is just not what is implied by a general

statement of a car’s reliability.

While usually, one could just look at likely scenarios

and determine the rarity of events, there is another

aspect of security which makes this not work well:

the intelligent adversary. In security, one assumes

that an adversary has some ability of control over

the system or environment and crucially, that an

intelligent adversary will choose to set things up

in a way that favors them. So, you may have set

up the communication properties on your network

to detect or correct 99.9999% of errors in random

noise. But unless some secret prevents the

attacker from knowing how your error correction

works, the attacker can generate network traffic

that makes your error correction useless.

Threat Modeling
Defining Scenarios
Commentary by Andrés Vega

One way that we reason about security in a rigorous

way is a process called threat modeling. Threat

modeling is sort of like setting up a game between

the defender and the attacker. The threat model

describes the properties you are trying to provide

and the capabilities of the attacker. If the attacker

is able to find a way to defeat the defender’s desired

security properties, this is a viable avenue of attack.

We call such a successful attack, a compromise, and

the weakness that lets an attack occur, a vulnerability.

Note that the term bug and vulnerability are not the

same thing. While many bugs do enable an attacker

to launch a successful attack, many bugs are just

anomalous, benign behavior. Similarly, a design flaw

can cause a correctly implemented system to have a

vulnerability. So, there need not be a bug in order to

have a vulnerability.

We need a term to describe the parties in the

system that perform all of the actions in the

system and might be erroneous, compromised,

or just plain malicious. We call these actors and

the things they do actions. It is important to

enumerate these up front as they are effectively

the “players” in the threat modeling game.

Back in earlier days of computing, many

computer systems were fairly isolated from

each other and programs needed to be secure in

this environment. Hence the number of actors

was small, often just a server, a client, and an

attacker. In modern systems that consist of many

distributed and isolated components, the number

of actors can be very large.

To see how large modern systems can get,

consider an assessment for the Sigstore project

and the way it might get integrated into an open,

community software repository like PyPI, a

community repository of software for the Python

programming language. The actors include the

PyPI server, the administrators of PyPI, the CA(s)

trusted to issue PyPI’s public key, parties that

control BGP and/or routers, parties that control

DNS, the developers who use PyPI for their

software, the CDN that distributes PyPI software,

the users downloading that software, and

outsiders. If you think it seems overwhelming,

consider also that at this point we haven’t even

listed the parties for Sigstore, which would be

another 10 or so actors!

However, in coming sections, we will describe techniques

that will enable one to quickly categorize groups of actors

as equivalent, which helps us to keep this manageable in

practice. For example, for many systems a party that

can control the network has similar capabilities in many

cases independent of whether they control routers, BGP,

or DNS. So, for threat models that focus on higher level

communication properties between actors over higher

level network protocols, the distinction of exactly how

an actor controls the network may not matter.

Is It Good Or Bad To
Have Many Actors?

You may think that having more actors automatically

makes a system have better or worse security properties.

There are two factors that lead to having many actors and

they impact the security of a system in opposing ways.

The first factor is the security principle that complexity

tends to lead to insecurity. Simply put, if an attacker can

bypass your system by finding a flaw, the more places

the attacker can look, the easier it tends to be. Of course,

this doesn’t mean you should remove encryption code

or security checks because they make the code longer!

It just means that all other things being equal, more

complexity (i.e. actors) tends to lead to more bugs.

The second factor includes the principle of least privilege,

that a party should have as little privilege as possible,

which is the main argument for compartmentalization.

Compartmentalization means that when one portion of a

system fails or is compromised, it is separated, much like

Actors

https://www.sigstore.dev/
https://pypi.org/

One more note is that having different levels of

compartmentalization between actors is common in

a system. Most systems have a trusted actor who is

responsible for indicating who the other actors are in

the system. (This is often a party like a CA, root of trust,

root key, or similar.) As a result, this trusted actor can

effectively issue false credentials and pretend to be any

other party. In contrast, the other actors in the system

may have strong isolation between them, making the

act of compromising them effectively independent

attacks that must be carried out. This degree to which

the isolation between parties contains a compromise

can be a critical aspect of the system’s security.

a ship might have protections so if one part of the

hull is breached and the internal part is flooded,

it doesn’t automatically spread to the entire

ship. Compartmentalization helps to contain the

attackers capabilities from a single compromise.

Consider instead a system with a single point of

failure; this has fewer actors, but is clearly weaker

from a security standpoint.

So, you really cannot read too much into the

security of a system by the number of actors alone.

You need to understand other key aspects of the

system.

A key aspect to consider is the mechanism by which

actors are compartmentalized (i.e., isolated) from

each other in a system. After all, if the private keys

for Alice and Bob are stored on a file system that

both have access to, then if either Alice or Bob is

malicious, they steal the other one’s key and then

can do anything the other’s private key is trusted

to do as well. So, it is worth discussing why, how,

and when actors are separated from each other.

Note that this also may depend on the deployment

environment. Perhaps some deployments share

storage for Alice and Bob for cost reasons. This is

important to highlight, as it will become relevant

later when we think about the impact of attacks.

compartments
of Actors

In addition to understanding the actors, it is

important to know what actions they perform. This

should include the actions that are desirable (at a

high level) and how they are carried out, including

any checks and balances.

For example, in TrashPanda Bank, customers may

have a list of actions they perform such as opening

an account, withdrawing money, checking a

balance, renting a safety deposit box, visiting their

safety deposit box, and making a deposit. For

each of these actions, there needs to be a detailed

description of how the process works and how the

various steps are verified by different parties.

An example action may look something like the

following:

Renting a safety deposit box:

Requires a customer with a current account to

make an in-person request at TrashPanda Bank to

a teller.

The teller processing the request first verifies

the customer’s account exists, is linked to the

customer (by checking their identification) and has

a balance of at least $100.

The teller then gives the terms and conditions

form to the customer, who signs the request. After

this is confirmed by the teller, the customer pays

the deposit fee to the teller. The teller logs

actions this transaction into their log book and inserts

the payment as per the steps in “making a depos-

it”, except that the remittance goes to TrashPan-

da’s safety deposit box fund (listed in the teller’s

handbook) instead of the user’s account

The manager is then called by the teller, who re-

checks the client’s identification and verifies the

remittance to TrashPanda’s safety deposit box

was processed by checking the logbook of the

teller. The manager now accesses the safety de-

posit usage map to find an unused safety deposit

box, considering customer requests for a specific

lucky number or an accessible box. The manag-

er then provides the customer a copy of the key

for the box. The teller and the manager use their

keys to provide the customer access to the vault,

where the safety deposit boxes are kept. The

manager and teller leave the vault to provide the

customer privacy. Once the customer is finished,

they exit the vault and the manager locks the vault

again.

Note that increased complexity of actions does

tend to correlate with insecurity, at least if you

ignore the complexity added by security steps. A

system which does a few simple things is easier to

secure in most cases.

Please don’t mistake this for saying that fewer

API calls or system calls means better security.

If that were true, we could just have one API call

that takes an argument telling it what action to

actually perform! This would be a case where the

complexity of the API isn’t well reflected by the

number of API calls.

In my experience, a Data Flow Diagram (DFD) is invaluable for threat modeling, providing a detailed view of

data management within a system to identify and mitigate security risks. DFDs give a thorough and detailed

view of how data is managed within a system, which is critical for identifying, examining, and mitigating

potential security risks.

These diagrams portray data movement within a system, shedding light on vital areas where data is entered,

exits, and is processed. This level of detail is key in spotting vulnerabilities. DFDs are especially adept at

uncovering potential points where an attacker could access or extract data. They cover the full spectrum

of the system we’re analyzing for threats, embracing all the internal and external components, like various

entities, actors, data storage, and data flows.

DFDs also enhance communication, clarifying system data handling and risks to stakeholders, aiding

in prioritizing security measures. Clear, understandable DFDs are vital for all involved to identify key

components and understand control paths.

For instance, a DFD for TrashPanda Bank would map money flow, highlighting entry/exit points, customer

involvement, asset storage, trust boundaries, and processes like bank teller and ledger operations. This

facilitates comprehensive threat analysis, examining potential data interception/manipulation points, and

assessing security measure effectiveness, ensuring robust protection against security threats.

Tracking trash
pandas
Commentary by Ann Wallace

Figure 4.1 Data Flow Diagrams

System Goals

One of the most important things to do in threat

modeling is to understand what an attacker

can and cannot do based upon the access they

have. In our concept of a “game” this is like the

conditions by which the attacker gains points

(by violating the goals you have for your system)

and the legal moves that the attacker can make

toward that end.

Assuming that you are being realistic in your

attacker model, the stronger the set of moves

the attacker can make, the more secure your

system is. To understand why, let’s say that

TrashPanda Bank made the assumption that all of

its employees were trustworthy and did their job

flawlessly. If it turns out that one of the employees

is malicious or makes a mistake, then you are now

outside the bounds of what you have considered

in your assessment. It is as though a player of the

game you set up made a move that you thought

was not legal, when you did your analysis! This

means you don’t have a way of understanding

what the impact of an attack would be or whether

your security will hold.

To make it simpler, there are a set of standard

assumptions that most systems make in the

current era (early 2023). A note for any future

reader, these assumptions tend to evolve over

time and so may not be reasonable while you are

reading this document.

goals and
non-goals

• Common assumption: The government, company

management, or a similar agency will not compel

the organization to perform actions that violate

the security goals of the system. While this may

seem a fanciful attack to some readers, this is a

legitimate attack risk that many companies have

faced and in fact do (often silently) face today.

For a real world example, consider the pressure

on Apple to create a malicious update and unlock

the San Bernardino shooter’s phone [Wikipedia:

Apple–FBI encryption dispute] However, most

security systems are designed so they will fail in

such a case and allow the government, company

leadership, or a sufficiently large set of malicious

insiders to violate its security goals

• Common assumption: Cryptographic algorithms

that are widely thought to be secure, are secure.

This includes public/private cryptography,

symmetric key algorithms, cryptographically

secure hash algorithms, etc. In practice,

contests like the ones that NIST holds to choose

cryptographic algorithms tend to have produced

excellent results. Even when algorithms fail, it

tends to be a slow breaking of the algorithm. The

breaking of the algorithm is often possible first

by parties with a large quantity of computational

resources instead of a sudden moment where

anyone can trivially break the algorithm. Other

standards bodies have a much more mixed

record, in particular if their security systems

are effectively designed by committee. Look

carefully for broad peer review of cryptographic

algorithms and security designs, as NIST

performs, as an indicator of quality.

• Common assumption: Hardware memory

protection mechanisms work as designed.

After SPECTRE and MELTDOWN, people in the

community realized that there are some ways

https://en.wikipedia.org/wiki/FBI%E2%80%93Apple_encryption_dispute
https://en.wikipedia.org/wiki/FBI%E2%80%93Apple_encryption_dispute
https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
https://meltdownattack.com/

to use rare cache / memory error behaviors to

bypass security protections. For example, a

program could read memory in the operating

system kernel or in another program. A series of

defensive code changes now makes these attacks

infeasible on modern hardware (as we understand

it). The assumption that memory protections

work is common not because it is universally

thought that memory protection will absolutely

hold in all cases, but largely because not having

this assumption makes it too challenging to design

security systems. It essentially makes it infeasible

to do compartmentalization on a single piece of

computing hardware and may make it feasible to

cause information disclosure from any component

on the same physical hardware. As this is currently

an area of active research by hardware security

researchers and chip makers, the protections and

our understanding of the risks in this domain are

likely to evolve over time.

Note that today, these assumptions are being relaxed

by some modern security systems like TUF. For

example, TUF supports multiple cryptographic

algorithms and has a built-in way to add and remove

cryptographic algorithm support while maintaining

security properties. This enables secure migration

to new algorithms either proactively, or as the need

arises.

For example, while there is support in TUF for post-

quantum cryptographic algorithms, many adopters

may not have enabled it.

 A TUF repository can enable post-quantum crypto

and re-sign its metadata using both algorithms,

thus allowing current users to securely transition

to the new algorithm and protecting all users

versus post-quantum attackers.

Here are some assumptions that are common but

are not necessarily good ones in this day and age.

• Misconception: An attacker cannot hack a

specific component or system. Modern

systems tend to have so much code and tend

to use so many libraries, that this just isn’t

a reasonable expectation. Even a “proven

to be secure” microkernel like SeL4 has had

security bugs found in it [SeL4 issue #85, SeL4

issue #86, seL4 Version 9.0.0 Release Notes].

It is important to assume code could have

bugs, especially large components, and to

design your system to have different isolated

compartments so that your system’s security

will degrade gracefully when components

are successfully breached. This assumption

seems to be on the way out, but some

systems being created today do still use this

assumption. You should assume that such

compromises are a matter of when, not if

[Catalog of Supply Chain Compromises].

• Misconception: A key or other secret will

never be leaked, compromised, misgenerated,

etc. Incidents violating this assumption are

common [TAG Security Catalog of Supply

Chain Compromises]. Modern systems

should design revocation mechanisms that

retain trust even when an attacker knows a

secret and is a man-in-the-middle. Ideally,

one should also design the system to prevent

substantial harm while you work to address a

secret disclosure.

Future-proofing
While Maintaining
Compatibility
Commentary by Justin Cappos

https://github.com/seL4/seL4/issues/85
https://github.com/seL4/seL4/issues/86
https://github.com/seL4/seL4/issues/86
https://docs.sel4.systems/releases/sel4/9.0.0.html
https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/README.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/README.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/README.md
https://github.com/cncf/tag-security/blob/main/supply-chain-security/compromises/README.md

• Misconception: Multifactor authentication

(MFA) using SMS is a sufficient barrier. This

assumption isn’t actually a bad one for MFA

that does not use SMS. An organization using

authenticator apps or hardware tokens seems

to do quite well from a security standpoint

(barring a few minor hiccups [Wired

Magazine: The Full Story of the Stunning RSA

Hack Can Finally Be Told], which do not seem

to be indicative of a trend). However, the

same is not true of SMS based MFA systems,

which have been shown to be vulnerable to

attack. So, do try to have your organization

not only mandate MFA, but choose a means

of performing it which provides a level

of security appropriate for what you are

protecting.

• Misconception: The complexity of parsing

code for a complex format is not particularly

relevant when considering security. This is

a common mistake that organizations make,

where the code to parse data formats or keys

becomes a major liability. The number of

X.509 certificate parsing errors alone that have

led to security vulnerabilities is astonishing

[MatrixSSL: Security Vulnerabilities]. A

related problem in this space is that even just

getting a format serialized into a consistent

format is a more difficult challenge than many

developers initially realize. So the complexity

of the data communication and storage

format should be a major concern, especially

for sensitive API calls and components.

Note that the following assumptions were thought

reasonable at one time, but have been shown not to hold

well in practice:

• Misconception: Operating system user access

control protections like file permissions are an

impassable barrier. It turns out that it is often not

that difficult to escalate privilege when gaining

access to an account on a system. The reason is

that the operating system’s system call boundary

is massive and hard to employ effective controls

on. You should not willingly let attackers into

a system and rely on user permission bits, file

ACLs, etc. as your only means of protection.

Rather think of these as a barrier that may slow

or trip up an attacker, but are not reliable as a

line of defense.

• Misconception: The network cannot be tampered

with. It turns out that becoming a man-in-the-

middle is possible in many scenarios, including

wireless attacks in a coffee shop, BGP route

hijacking, DNS cache poisoning, etc. While it

isn’t trivial for any person to become a man-

in-the-middle for a network path between two

randomly selected computers, it certainly isn’t

unobtainable for a large and important class of

attackers.

• Misconception: Software provided by

dependencies are secure so long as we take

minimal care when adding them. Attackers in

some ecosystems have begun attacking software

projects by taking over a dependency and adding

malicious code. In other cases, a dependency is

simply neglected for a long time and does not

receive security patches. In yet other cases,

an organization simply forgets or neglects to

update dependencies to a later version so that a

vulnerable version remains in use. Like the

https://www.wired.com/story/the-full-story-of-the-stunning-rsa-hack-can-finally-be-told/
https://www.wired.com/story/the-full-story-of-the-stunning-rsa-hack-can-finally-be-told/
https://www.wired.com/story/the-full-story-of-the-stunning-rsa-hack-can-finally-be-told/
https://www.cvedetails.com/vulnerability-list/vendor_id-16019/product_id-35500/

software your organization writes itself,

dependencies need care, examination, and

attention so that they do not become liabilities.

• Misconception: Firewalls keep out bad guys.

Firewalls are an important tool for helping to

provide compartmentalization of networked

components. However, experience shows that they

are insufficient on their own. In practice, many

attacks involve an attacker bypassing firewalls and

network monitoring systems to access things that

should have been restricted. This is not surprising

given how difficult it is to write a policy that stops

exactly all of the “bad things” and allows exactly all

of the “good things”. So, it may be helpful to think

about this as a way to increase the difficulty for an

attacker rather than as a means for stopping them

outright.

• Misconception: Antivirus stops malware on end

hosts. In much the same way, antivirus software

on client machines largely just helps to make

certain compromises less likely, but comes

with its own risks and concerns. Today many

experts recommend only using the antivirus

software that comes with your operating system

(if applicable). However, purchasing commercial

antivirus software gives questionable benefits and

does come with some added risk [Project Zero:

How to Compromise the Enterprise Endpoint,

The Register: Avast antivirus hole patched after

public Project Zero slap, CSO: Google researcher

reveals more Kaspersky bugs, calls out the irony

of antivirus].

• Misconception: Users can be trusted to choose

and manage sufficiently secure passwords. This is

patently false, which is one reason why multi-factor

authentication is an option or even a requirement

for many systems. Strong password guidelines for

users are important. Users should also

be incentivized to use tools like password

managers.

Note that this does not mean you should not

employ the controls in the above area! It just

means that long held assumptions on the efficacy

of these measures should be restated and that

they are better used as part of a layered approach

to make things harder, instead of infallible

controls. They should not be relied on alone to

stop a skilled attacker.

https://googleprojectzero.blogspot.com/2016/06/how-to-compromise-enterprise-endpoint.html
https://googleprojectzero.blogspot.com/2016/06/how-to-compromise-enterprise-endpoint.html
https://www.theregister.com/2015/10/06/google_zero_hacker_reports_remote_exec_hole_in_avast_antivirus/
https://www.theregister.com/2015/10/06/google_zero_hacker_reports_remote_exec_hole_in_avast_antivirus/
https://www2.cso.com.au/article/585258/google-researcher-reveals-more-kaspersky-bugs-calls-irony-antivirus/
https://www2.cso.com.au/article/585258/google-researcher-reveals-more-kaspersky-bugs-calls-irony-antivirus/
https://www2.cso.com.au/article/585258/google-researcher-reveals-more-kaspersky-bugs-calls-irony-antivirus/

System Non-
goals

In addition to goals, another key aspect to

consider are things that you consider to be non-

goals of the system. These are “illegal moves” in

the game. They tend to come in two types, the

first being things that you simply do not care

about if they occur.

For example, TrashPanda Bank is likely well

aware that people off the street may wander

into the bank. Some of those people may steal a

pen or the deposit sheets that are left out on the

desks. They may use the bathroom and enjoy the

heat / air conditioning without being a customer.

However, TrashPanda Bank may also just assume

that those costs are minimal and any effort to

deter such actions would have a negative impact

on the experience of other customers. So, solving

these types of issues may be a non-goal.

The second type of common non-goal is one

that seems too fanciful for the attacker to carry

out. For example, let’s say in order to break

into TrashPanda Bank, the attacker will become

president of the country and launch a nuclear

strike on the vault. Whether or not the vault

resists such an attack, any surviving members

of the company are likely to be focused on things

other than the vault. So, TrashPanda Bank could

consider worrying about such an attack a non-

goal.

Another way to frame the system goals is to talk

about what an attacker may want to accomplish.

This is sometimes (mis-)used to say that these goals

are the only things an attacker would want to do,

and so the system’s goals should just be to prevent

those Unfortunately this line of reasoning will often

miss cases because it is assumed the attacker will

simply not care to perform them. In the movie The

Dark Knight, there is a famous (and long) story told

by Alfred, which concludes with the statement “Some

men just wanna watch the world burn”.

You should assume that someone will have the

temptation to do a bad thing if it is possible to do so

without a massive amount of skill and resources.

• Denial of Service: This is where an attack prevents

legitimate users from accessing information or

services they are supposed to have access to. This

can be very localized, such as locking a user out

of their account, or very broad, such as bringing

down an entire website. Attacks of this type are

sometimes done using a set of computers that

work together to attack a system. An attack of this

type by a distributed set of computers is called a

DDoS attack (Distributed Denial of Service attack),

which you likely have heard mentioned before.

• Escalation of Privilege: This is the act of

gaining more authorization to perform actions

in a system that should not be granted. Note

that while Spoofing focuses on appearing to be

someone else, Escalation of Privilege focuses

on using an identity you have to do things which

should not be authorized. For example, consider

the administrative assistant for TrashPanda’s

CFO. For withdrawals over a certain amount,

the CFO may be required to place her signature

on the transaction confirmation. However, if the

administrative assistant for the CFO states that the

CFO authorized it, the teller may (incorrectly) still

complete the transaction. This is a case where the

administrative assistant has escalated his privilege

to do an action he was not authorized to perform.

Fortunately, security researchers have long

understood that it is too easy to miss computer

security concerns when threat modeling. To aid in

going through different cases, there is a model called

STRIDE. STRIDE stands for the following properties:

• Spoofing: The act of using another’s credentials.

This can be for many purposes, such as gaining

access to a resource they should not have

access to, or masking the source of an attack.

Commonly, this is done by authenticating as a

different user when performing an activity.

• Tampering: The act of modifying information

in a malicious way. This depends a lot on the

project, but can involve things like replacing a

user’s data with something else, manipulating

account balances, or changing log information.

• Repudiation: The act of performing an action but

asserting you did not in situations where others

cannot prove otherwise. This involves situations

where the attacker makes tracing the cause of a

problem infeasible.

• Information Disclosure: This is when you make

private information public. Situations where

this occurs typically involve data leaks of user

account data, private messages, financial details,

etc.

Using STRIDE To Enumerate Attacks and
Goals

threat Property Violated Impact

Spoofing Authentication Misdirected Identity

Tampering Integrity Unreliable data

Repudation Non-repudiation Lack of ownership for actions

Information Disclosure Confidentiality, Privacy Lack of Confidentiality

Denial of Service Availability Unreliable service

Escalation of Privilege Authorization Grants Unauthorized access

Figure 4.2 STRIDE

Adapting STRIDE
to Modern System
Boundaries
Commentary by Justin Cappos

STRIDE has been used for a long period of time,

but unfortunately has portions that don’t apply as

well to modern distributed systems. So the notion

of escalating privilege could be thought better as

the ability to move laterally (break the boundaries

between actors) in a system. In other words, once

an attacker gains access to X, are they able to find

a way to get access to Y? This involves a failure to

sufficiently compartmentalize X and Y from each

other.

Also, the notions of spoofing and escalation should

be thought of in an additional way that a reader may

not initially consider. Distributed systems often

use a concept called a token (also called a capability

in some literature), where an API request contains

information to authorize the transaction. In these

cases, authentication is not needed. The API request

token is sufficient to authorize access. This is much

like a movie ticket being sufficient to grant access

to a movie. There is no need to check the attendee’s

identification, so long as they possess a valid ticket.

So, for Eve to gain access to Bob’s data, it doesn’t

necessarily mean that she must know Bob’s password.

She may have just gained access to a token that some

service uses to perform actions on behalf of Bob. She

may even confuse the service into doing the actions

she wants using Bob’s token. Of course, if tokens are

not used and service X is just always trusted to do a

set of actions, spoofing and escalation become trivial

once you compromise a service!

A Methodology
for Identifying
Discrepancies with
Respect to Privacy
Regulations
Commentary by Ragashree Shekar

 In the current landscape, with more and more

data generated from each of us through the surplus

connected devices we use, it also gives an opportunity

to gather more and more data about us and utilize it

to enhance their business. It is about time privacy is

engineered into each project we build that collects

personal, health or protected user information

not just to comply with the regulations, but also to

protect user’s right to privacy. LINDDUN is a privacy

engineering framework that helps model the system,

find and manage the threats associated with this

system. LINDDUN categorizes the threats into 7

categories such as Linkability, Identifiability, Non-

repudiation, Detectability, Disclosure of Information,

Unawareness, and Non-compliance.

Let’s look at each one of them:

• Linkability tries to find if an attacker is able to

link two items of interest without knowing the

data subject [Art. 4 GDPR - Definitions - GDPR.eu]

corresponding to these items.

• Identifiability tries to find if the attacker is able to

identify a data subject from a set of data objects

through items of interest.

• Non-repudiation is when a data subject cannot

deny an action.

• Detectability: An attacker is able to distinguish

whether an item of interest about a data subject

exists or not, regardless of being able to read the

contents itself.

• Disclosure of Information: An attacker is able to

https://gdpr.eu/article-4-definitions/
https://gdpr.eu/article-4-definitions/

learn the content of an item of interest about a

data subject.

• Unawareness: The data subject is unaware of

the collection, processing, storage or sharing

activities (and the corresponding purposes) of

the data subject’s personal data.

• Non-compliance: The processing, storage, or

handling of personal data is not compliant with

legislation, regulation, and/or policy.

A few notes to consider:

First, Identifiability and Linkability are closely

associated with each other as lack of anonymization

affects results in identifying 2 data subjects or

linking two different data objects.

Second, Awareness is a big part of the privacy laws,

regulations and policies and failing to inform the data

subject of what data about them are being collected,

how it would be processed/used, who else would it

be shared/sold to, and to let the data subjects decide

if they want to opt-in. Thus unawareness is a subset

of non-compliance.

Once you understand the potential attacker(s)

and a goal, it is helpful to think through the ways

in which they could achieve this. While you can

just sit and do this in whatever way you want, it is

often useful to reason about this by brainstorming

using a tool called an Attack Graph. (Note, this is

also called an Attack Tree or Threat Tree / Graph

in some literature.)

An attack tree has at the top (which is called the

root node), the goal of the attacker. For example,

the attack tree in the Figure 4.2, has “Open Safe”

as the root node, so this is the attacker’s goal.

The nodes in the tree (i.e., the square boxes)

are connected by one or more edges (the lines

between boxes). For two nodes that have an edge,

the higher node is called the parent and the lower

node is the child. The child node or nodes are

more details about how to achieve the parent

node.

Attack graphs were really helpful for me when I

was first starting to threat model large systems

and also are really helpful now when I don’t

understand a system well. Today, I often can

intuitively go through and enumerate the cases

here because I’ve had enough practice. So, I rarely

write out an attack graph. (I usually jump straight

to attack matrices, which will be described later.)

You can think of the exercise of writing out an attack

graph like writing out your multiplication tables by hand

before you have them memorized. Eventually it may

become second nature, but it will be an immense help

at first. If you’re starting out, I strongly encourage you

to start with attack trees though and get practice with

them. This will help you build the foundation you need

to do more accurate threat assessments.

One problem with attack graphs is you don’t necessarily

know how complete they are. There are a wide array of

things that you haven’t thought of. Be sure to think back

to your system goals carefully and focus on them. When

you reason about the situations where those goals hold,

think about what those situations mean for an attacker.

How is the attacker constrained? What can the attacker

do? You may need to update the goals and other parts of

the writeup as you go through this process.

One problem with attack graphs is you don’t necessarily

know how complete they are. There are a wide array of

things that you haven’t thought of. Be sure to think back

to your system goals carefully and focus on them. When

you reason about the situations where those goals hold,

think about what those situations mean for an attacker.

How is the attacker constrained? What can the attacker

do? You may need to update the goals and other parts of

the writeup as you go through this process.

There is a depth of material on attack trees that focuses

on adding parameters of different types to them. They

can do things like help you reason about what attackers

with different skill sets / access / constraints might do in

a system or how how much an attack might cost an

Attack Graphs: A Useful Technique

unraveling
attack graphs
Commentary by Justin Cappos

Fig 4.2 : Academic: Attack Trees - Schneier on Security
In the next stage, we can see that the goal of learning the combination can be achieved in two ways - finding the
written combination and getting the combination from the target (who is an authorized individual possessing
the combination to the safe) which can further be done in 4 ways. These represent the OR nodes. Success in
any one of these attacks leads to success of the ultimate goal of opening the lock. One attack to retrieve the
combination from the target includes eavesdropping, which needs the success of two attacks where the victim
states the combination and the attacker listening to the conversation. Failure of either results in an unsuccessful
attempt to break the lock open.

Sample attack tree

https://www.schneier.com/academic/archives/1999/12/attack_trees.html

an attacker. As you are working through examples,

you may find it useful to refer to the following

reference: Schneier, B. “Attack Trees.” Schneier on

Security, Dr. Dobb’s Journal, December 1999 .

For some clients or colleagues Attack Graphs and

Trees are a valued deliverable. They are most valued

by visual learners and non-technical persons as a

tangible representation of what is elaborated on

in a Threat Matrix. An Attack Graph helps a reader

easily follow from initial breach to the attacker’s

goal, and identify which nodes on the graph may

be a hotspot either for traversal to other goals, or

is used in many possible routes to the same point

of impact. This provides a quantifiable justification

for the controls used to remediate the threat of

attack.

Attack Graphs can be intensive to build out and

maintain, so it is recommended to use a solution

that can generate Attack Graphs from code.

Not all attacks
are the same

Note that not all avenues of attack will have the

same properties. Some attacks an attacker can

only do once and if it fails they will be caught,

while others an attacker can do repeatedly. Some

require specialized skills, while others can be done

by anyone.

from improbable to
inevitable
Commentary Justin Cappos’s

It is helpful when thinking about attacks to really think

outside the box. One exercise I like to do is to “prove”

why an attack couldn’t happen. As I’m reasoning through

it, I usually come up with the way in which the attack

could occur.

For example, consider TrashPanda Bank. If I’m thinking

of how to get into the vault, I might think “It’s not

possible because there is a guard during the day and an

alarm system (which automatically triggers a lockdown)

at night. Even if you get past those, you need to have the

manager key and a teller key to open the vault.” I would

turn thought into “In order to break into the vault, you

need to somehow bypass a guard during the day or the

alarm system at night. The attacker needs a manager key

and teller key...” and then proceed from there to devise

under what circumstances this would be possible.

It is also important to question your assumptions a bit

when doing this process. So, you should also consider

that this all assumes that the alarm system functions

properly, the locking mechanism in the vault operates as

designed, the vault was correctly installed and so drilling

in, etc. are impractical.

Different attacks
can have different
impact

Not every compromise is the same in a system. In some

cases an attacker gains only limited access to a system. In

others, they may have total control. We talk about these

differences by talking about the “impact” of an attack.

You can think of impact as the monetary cost, reputational

Visualization
Commentary by Jack Kelly

https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html

Impact category Description Ratings Range

Damage How bad is the damage? No damage = 0
Complete destruction = 1-

Reproducibility How easy is to reproduce
this attack?

Difficult to reproduce = 0
Easy to reproduce = 10

Exploitability How easy is it to cause this
attack?

Difficult or practically infeasible = 0
Easy to exploit = 10

Affected users Which users does this
attack impact?

No users = 0
All users across privilege levels = 10

Discoverability How easy is it to discover? Difficult to discover =0
Easy to discover = 10

2. Reproducibility: Reproducibility stands for how easy

is it to reproduce this attack? Is it just very juvenile or

does it need experience to find the vulnerability and

cause this attack?. 0 refers to Difficult or impossible

and 10 refers to very easy to reproduce

3. Exploitability: Complimentary to Reproducibility,

exploitability refers to what is needed to ensure the

attack is successful? Does it take advanced scripting

or tools to exploit the vulnerability or is it as simple

as adding the string “ OR 1=1?1 0 refers to practically

infeasible computational power or sophisticated

tools & techniques, whereas 10 refers to just an

availability of interface to interact with the target

application such as browser or command line etc.

4. Affected users: Affected users refers to how many

users are impacted by this attack, ranging from no

users (0) to all non-administrator users to all-users

and administrators alike (10).

5. Discoverability: Discoverability refers to how easy it

is to find the attack in the first place. Is it evident in

the plain sight (for example use of components with

publicly disclosed vulnerabilities, authentication

in the URL, or directory traversal) or is it hard to

disclose? The scores range from 0 (very hard to

discover) to 10 (very easy to discover).

1 For the reader unfamiliar with SQL injection, when “ OR 1=1 is inserted in
a form field it will cause many SQL queries to evaluate to true. This can cause
things that are supposed to be conditional, always to be executed. So it can do
things like cause all the user data to be displayed instead of only the informa-
tion for the current use.

cost, etc. to an action having occurred. However,

it ishard to know an exact value for this. What

is the cost of having leaked a large amount of

private customer data? Unfortunately, this

seems to happen fairly regularly for some large

companies and very little actually occurs. In

other cases, a company may face lawsuits from

investors and customers or fines from regulators

after a security breach. This makes the impact

easier to quantify.

Using DREAD to
estimate the
expected impact
of a threat

DREAD stands for impact categories for

Damage, Reproducibility, Exploitability, Affected

users, Discoverability. The idea is to provide a

measurable means to quantify the impact of an

attack by rating the attack between 0-10 in the

impact categories, 0 being no impact and 10

being the highest impact. The final impact is the

average of the impact across these categories.

Impact score = (Damage + Reproducibility

+ Exploitability + Affected users +

Discoverability)/5

Let’s dive into what each of these impact category

means:

1. Damage: The potential destruction the

attack is capable of causing for the assets

in the scope. In this context of information

security, information disclosure is the

damage. 0 stands for no damage, 10 stands

for destruction of the information or

information system serving this data causing

denial of service.

Figure 4.3 - DREAD

On the other hand, the popular ATT&CK framework

offers a systematic categorization of threats based

on types of attacks, techniques, and detailed sub-

techniques. An example would be the modification of

specific system files by an attacker. While ATT&CK

provides a comprehensive inventory of attack methods,

its fixed categorization lacks the flexibility of a dynamic

threat model, rendering it more suitable for incident

response and remediation rather than proactive risk

identification.

Frameworks like FAIR aim to enhance the precision of

risk assessment by quantifying all aspects of risk, often

by assigning a monetary value or rating risks on a fixed

scale from 0 to 100. These methods strive to translate

the abstract nature of security risks into concrete

figures for more accurate analysis.

Meanwhile, the “Rapid Risk Assessment” (RRA)

method stands out for its practical application in

real-world settings. Developed and refined over six

years by Mozilla’s security engineers, the RRA is

designed to deliver “80% good” risk assessments in

a short time frame (30 to 60 minutes). its speed and

efficiency, taking only 30 to 60 minutes to generate

a high-level overview of potential risks. Designed to

provide a concise and accessible snapshot of security

vulnerabilities, the RRA outlines clear risk levels in a

format that’s easy to digest. While it starts as a high-

level tool, the RRA has the potential to evolve into a

comprehensive threat model as more detail is accrued

over time. Its agility is a significant advantage—it can

be implemented at any project stage, allowing for

continuous updates as the project landscape changes.

The RRA is not just swift but substantive; it captures

critical risk impacts, compiles a data dictionary, and

gathers insights into the service’s operational flow.

This method stands out by not only identifying risks

but also by offering actionable recommendations

prioritized by the security team, thus providing a clear

DREAD framework eases the threat treatment by

putting a number value to the threats in a criteria

that novice professionals are also familiar with and

could articulate, thus limiting the barrier to entry.

While the framework looks seamingly simple, the

accurate analysis in complex ecosystems needs

extensive information security expertise with up to

date knowledge in the domain.

In practice, many security experts argue that

discoverability is both hard to quantify and so often

gotten wrong. As a result, it is suggested to use DREAD

without trying to estimate D (Discoverability). To do

this, you would always mark Discoverability as a 10.

For more information on the DREAD model, refer to

DREAD (risk assessment model) - Wikipedia.

Personalizing
the Art of Risk
Assessment to Fit
your Needs
Commentary by Andrés Vega

Risk assessments, essential for forecasting potential

security breaches, rely heavily on threat models.

These models enable us to adopt an attacker’s

perspective, ensuring that appropriate controls or

mitigations are in place to minimize risks. Although

predicting adverse outcomes is a challenging aspect

of threat modeling, it is critical for accurate risk

assessment.

The DREAD methodology aligns with the software

development phase, guiding the risk analysis related

to software issues. It focuses on the technicalities

rather than the financial or reputational impacts of

security failures, such as the costs incurred or the

damage to a company’s reputation when software

vulnerabilities are exploited.

https://en.wikipedia.org/wiki/DREAD_(risk_assessment_model)

Realistically, you get the most value out of understanding

roughly how likely things are 1-in-100 vs 1-in-a-million

vs 1-in-a-trillion, etc. versus trying to put an exact

number.

the thousandfold
misconception
Commentary by Justin Cappos

I worked with Evan Gilman, Matt Moyer, and Enrico

Schiattarella from the SPIFFE / SPIRE team on a threat

assessment and as part of it we tried to quantify risk. We

each did this independently for aspects of the system; our

answers often varied by more than 10. In fact, in one case

it varied by more than a factor of 1000! After discussing

these differences, we began to better understand ways in

which our mental models differed about how the system

could be deployed. This was a really useful exercise for

us even though I don’t think any of us put a lot of faith

that the values we ended up with are close to the real

value.

expected damage

So if one understands the likelihood of things happening,

how does that help if the impact of those things differs?

Well, fortunately, there is a simple formula to compute

the expected damage from an attack:

Expected damage ~= likelihood * impact

For example, if something has a 1-in-100 chance of

occurring on a specific day, and costs you $1000 when

it occurs, you expect that the amount you’ll have to pay

over a long period is about $10 per day.

direction for next steps in risk mitigation. RRA

also functions as a tool to democratize risk

understanding among non-experts, facilitating

broader engagement with risk management

practices.

For more information on risk estimation, here

are some references to most commonly used

frameworks:

- NIST SP 800-30

- MITRE ATT&CK

- Factor Analysis of Information Risk

- Mozilla Rapid Risk Assessment (RRA)

likelihood / risk

A very useful concept when thinking about

security assessments is the concept of risk.

Rather than simply categorize things as possible

and impossible, risk lets us try to understand how

likely they are. If you have two equally negative

outcomes which could be addressed with the

same amount of effort, the more likely one is the

one to focus on first.

Unfortunately, there really isn’t a solid way to know

how likely certain events are in computer systems.

These are uncommon events and advances that

attackers make lead to huge advances in attack

capabilities. However, in general, most people

underestimate unlikely events. To be blunt, the

state of the field is commonly that one tries to list

existing anecdotal examples and once that occurs

in a sufficiently public way, everyone seems to

agree that this is now something to be concerned

about.

https://csrc.nist.gov/pubs/sp/800/30/r1/final
https://attack.mitre.org/
https://infogalactic.com/info/Factor_analysis_of_information_risk
https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html

the actual values for likelihood and impact aren’t really

known in practice. So understanding “that things that

are likely and high impact are really bad and need to be

addressed” is going to be more useful in practice than

the actual formula will be.

Precedented
Ordering
Commentary by Andrew Martin

We have found it helpful to list the remediations and

controls from a threat model in precedence order. The

recipient of a threat model is likely to be a risk owner

such as a CISO or equivalent holder of funds, and the

model should inspire them to remediate immediate

existential threats, or threats with unacceptable

impacts on business functionality, and consider which

of the other scoped threats are worth investing in.

Expected damage is a useful metric for risk management

at the executive level, and it can be modulated with

the secondary data point of likelihood — existential

risks should be addressed in some manner, but it’s

also acceptable to mitigate them in other ways (such

as transferral with disclaimers or insurance policies,

or acceptance of low likelihood). Each mitigation is a

complex tree of possibly catastrophic permutations

and so should be explicitly addressed by the risk owner.

How do we make
sure we didn’t miss
anything?

One common problem is that it is easy to miss one

or more cases when doing threat modeling. With

distributed systems that have many components,

this problem becomes much more common. The

reason is that there are many different combinations of

thinking about
impact
Commentary by Andrés Vega

When assessing risks, it’s practical to disregard

exceedingly rare yet high-impact events, such as

a catastrophic meteor strike on Earth. Similarly,

events with negligible consequences, like a child

taking an extra piece of free candy, are also best left

out of serious risk consideration. The focus should

instead be on plausible and significant threats—those

with the potential to broadly impact your project’s

ecosystem.

For example, a critical code vulnerability that leads to

data breaches across the board is a realistic concern.

Such a vulnerability might lead to:

• Less than a week of negative press coverage in

industry media and technical websites

• No legal ramifications anticipated

• It would require concerted efforts from

multiple teams to manage communications and

implement patches, potentially halting regular

operations as the company digests the news and

formulates a response

• Financially, the damages could soar to $10

million, factoring in various repercussions.

However, it’s expected that there won’t be any direct

loss of competitive advantage, which limits the scope

of long-term damage.

When addressing risks, you can look at how much

your protection would cost (in terms of effort, money,

etc.) and how this changes the expected damage.

This would be an ideal way to prioritize how to work

on things. So why don’t we do this? Because

attack matrices

As the simple example above shows, there can be a
number of fairly complex interactions between actors
when they could be malicious and act in unison. We
could just write one big massive block of text to describe
all of the interactions in the system and how different
malicious actors can cause harm. This would be really
unwieldy to read and to ensure we didn’t miss any cases,
so instead we recommend you write it in a way that a
reader can more easily reference.

To do so we use a representation called an attack matrix.
An attack matrix is typically written so that the rows of
the matrix correspond to a set of actors that are under
the control of the attacker. The columns often represent
different security designs that you may want to evaluate
or things like different capabilities the attacker may
have. What you are effectively doing is putting the text
for what an attacker can do in the part of the matrix that
corresponds to that set of capabilities.

Let’s look at a few example attack matrix entries for the
previous section’s example vault at TrashPanda Bank.

Malicious actor(s) Impact

Customer + guard Loss of forensic trace-
ability from customer
malicious actions. Able
to falsely blame other
customers for malicious
actions

Teller + guard Vault may remain
unlocked after a
customer visits the
vault, when this teller
and guard are working

Reducing the number
of rows (actors)

Note that if we continue to fill out the matrix above, there

will be quite a few rows due to the fact that there are

2number of actors different combinations of malicious actors.

When the number of actors is even moderately large (like

5 or 6), this can be overly burdensome. Fortunately for

us, in most cases the number of interesting sets of actors

is actually quite small. For example, if the teller, guard,

components that could be compromised by an

attackerand used collectively to do nefarious

things.

For example, suppose that in TrashPanda Bank

suppose that the vault is locked and may only be

unlocked by the manager’s key and a key from

any one of the tellers. People going into the vault

are also checked by a security guard to ensure

they are escorted in by the manager. All vault

entry and exit times are logged by the security

guard. The security guard notifies the manager

when the customer leaves so that the manager

and teller may retrieve their keys and re-lock the

vault, which the guard confirms to the manager.

If you threat model this situation, you also need

to consider cases where a malicious security

guard can work with a malicious customer to

do something bad, by not logging their entry.

Suppose the customer enters the vault and

starts a fire or does some similar action. If the

customer isn’t logged, it will not be possible

to know who to blame. Even worse, the guard

could potentially add a log entry to indicate that

a different customer entered, blaming them

for the incident. The system has lost forensic

traceability (the ability to know what happened)

of these events due to having insufficient

protections over the security guard being

malicious and working in coordination with a

malicious customer.

Similarly, if a teller and guard work together,

they could simply fail to re-lock the vault after a

customer leaves. The teller could fail to perform

the action and the guard could simply say to the

manager that the vault was re-locked.

the same impact, how do you label the row? In an

attack matrix, what you do is to take the minimal set

of actors that will cause a certain impact and label

the row with it. This indicates that any attacker with

at least these parties compromised, can perform this

action.

Notice also that in some cases the impact of a

compromise of different (disjoint) parties could be

the same. For example, suppose that teller+guard

and manager+guard have the same impact. In this

case, it is sensible to write the row as teller+guard OR

manager+guard to save space instead of having two

duplicate rows.

These space saving tips do not fully solve the problem

though. Consider that the matrix we wrote before has

the customer+guard row (such as above) as well as the

potential for us to add a teller+manager+guard row.

How do you know which row of the matrix to use?

To make this clear to the reader you should sort the

attack matrix so that the most impactful attacks are

lower in the matrix. When reading an attack matrix

and reasoning about a scenario, move down the

matrix to find the lowest row that you match and then

use this cell to determine the impact.

For more information about threat matrices, here are

some references for further reading:

G. Almashaqbeh, A. Bishop and J. Cappos, “ABC:

A Cryptocurrency-Focused Threat Modeling

Framework,” IEEE INFOCOM 2019 - IEEE Conference

on Computer Communications Workshops

(INFOCOM WKSHPS), 2019, pp. 859-864, doi: 10.1109/

INFCOMW.2019.8845101.

https://arxiv.org/abs/1903.03422

Matt Tatam, Bharanidharan Shanmugam, Sami Azam,

Krishnan Kannoorpatti, “A review of threat modelling

and manager work together, they can really do as

they please and so a customer also being malicious

really doesn’t add any further impact to the attacks

that can be performed.

A few useful rules to consider:

• A superset of a set of malicious actors can do

at least the union of all subsets of those actors.

In other words, if a teller+manager can have

impact X, a manager+customer can have impact

Y, and a teller+customer can have impact Z.

The manager+customer+teller can have any

impact from X, Y, and Z. In fact, the impact may

be greater than this because X, Y, and Z may

be limited by checks the non-malicious party

performs.

• It is common for many rows to subsume other

rows. This is for two reasons. First, once a

certain level of compromise is reached, usually

the attacker effectively has full control of the

system. In this case, additional compromises

do not change the security impact of the attack.

Second, some parties are so limited that their

ability to harm a system has minimal added

impact. So, whether they are malicious or not is

inconsequential.

• Many capabilities are quite easy to get in

practice. So, if this is the case, it may be better

to assume that an attacker already has those

capabilities in all cases in the matrix. For

example, it is common to assume a man-in-the-

middle attacker who can intercept and modify

network traffic. Breaking the table down into

attackers that can and cannot do this may make

the table unnecessarily long.

A question arises, if you have different ways to get

https://arxiv.org/abs/1903.03422

ensuring
comprehensive
coverage
Commentary by Andrés Vega

Threat Matrixes help consider whether all potential

threat vectors have been accounted for, by providing

a framework for reviewing and analyzing the trust

relationships within your systems in scope of the

assessment.

Few considerations to keep into account:

Interconnected Risks: Cloud native systems are highly

interconnected with other systems and may have many

actors -- an attacker can often move between actors with

an attack, as such, the ability to exploit one actor can lead

to compromising others.

Critical Isolation: Implementing and maintaining strict

isolation between different actors (servers, agents,

containers) is crucial in mitigating the spread of an

attack.

Visualizing Trust Boundaries: An attack matrix like

the ones from the SPIFFE and SPIRE Assessment Attack

Matrices or the Sigstore Project Threat Model helps in

visualizing trust boundaries and potential paths an

attacker might exploit, and include details on mitigation

and the respective score for a certain vulnerability or

threat, with notes on the current state and potential

risks.

approaches for APT-style attacks”, Heliyon,

Volume 7, Issue 1, 2021, ISSN 2405-8440,

https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC7814160/

https://www.sciencedirect.com/science/article/

pii/S2405844021000748)

Rajesh Gupta, Sudeep Tanwar, Sudhanshu Tyagi,

Neeraj Kumar, “Machine Learning Models for

Secure Data Analytics: A taxonomy and threat

model”, Computer Communications,

Volume 153, 2020, Pages 406-440, ISSN 0140-

3664,

https://doi.org/10.1016/j.comcom.2020.02.008

https://www.sciencedirect.com/science/article/

pii/S0140366419318493

Zhang, L., Taal, A., Cushing, R. et al. “A risk-level

assessment system based on the STRIDE/DREAD

model for digital data marketplaces.” Int. J. Inf.

Secur. 21, 509–525 (2022).

https://doi.org/10.1007/s10207-021-00566-3

https://docs.google.com/spreadsheets/d/1M2AgqBQTlZSfCL7La2Kz8KhD1M17rbV_OJZN_POQVGg/edit#gid=0
https://docs.google.com/spreadsheets/d/1M2AgqBQTlZSfCL7La2Kz8KhD1M17rbV_OJZN_POQVGg/edit#gid=0
https://docs.sigstore.dev/about/threat-model/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814160/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814160/
https://www.sciencedirect.com/science/article/pii/S2405844021000748)
https://www.sciencedirect.com/science/article/pii/S2405844021000748)
https://doi.org/10.1016/j.comcom.2020.02.008
https://www.sciencedirect.com/science/article/pii/S0140366419318493
https://www.sciencedirect.com/science/article/pii/S0140366419318493
https://doi.org/10.1007/s10207-021-00566-3

the power
of critical
conversations
Commentary by Justin Cappos

I find it useful to talk through my threat models with

other people. The act of explaining something aloud

can really force you to go through and rethink it.

When you do this, it doesn’t have to be a technical

security person actually! You can talk with a friend

you’ve known since primary school, your pet, or even a

stuffed animal. The important thing is to make yourself

reason carefully through what you are claiming in a way

that you reconsider your assumptions and conclusions.

I find it most useful to discuss threat models with

people that are skeptical of the value of a system. They

will certainly push back on any claims you make that are

overbroad. Them poking holes in your statement help

you to be more precise about the value and benefits

of the system you are describing. Just remember to

keep the statements falsifiable and you can have a

productive, factual argument.

Final thoughts on
threat modeling

Threat modeling is not an exact science, but is

necessary to reason about what you are protecting a

system against and in what scenarios those protection

holds. It helps you understand weaknesses in your

design and, as we will discuss in a moment, how

prospective security designs will impact that set of

weaknesses. With a little practice, the art of threat

modeling can become second nature.

m
it

ig
a

t
in

g
r

is
k

w
it

h
 e

x
p
e
r
t

in
s
ig

h
t

m
it

ig
a

t
in

g

It is common for many systems to be constantly under

attack. What is more important is detecting successful

attacks and determining their severity. A person who

steals a pen from TrashPanda Bank is less of a concern

than one who steals the vault keys from the manager!

Non-repudiation
/ Forensic
Traceability

Once you’ve been attacked successfully, you may have an

intruder in your systems. You may need to look through

what has occurred to understand which actions an

intruder performed and which were legitimate actions

by the normal system.

If in TrashPanda Bank, Bob the teller says that Alice the

manager asked him to give her the contents of his cash

drawer, but Alice denies this, how do we know who to

believe? Well, if Bob got a receipt or there exists a video

recording then there may be a way to prove who is lying

and who is honest.

In computer security, this is usually done by having

something called non-repudiation. This is where a

statement is made such that it later can be proven that

a specific party actually made it. This is usually done

by the party (Alice, let’s say) signing it with a private key

that only she owns. Then any party with Alice’s public

key can verify that Alice (or a party who compromised

her private key) made that statement. So, as you can see

non-repudiation is essential for post-attack forensics

and should be a goal for any systems with multiple actors.

Note, it is possible to have differing amounts of non-

repudiation and detection in a system. If TrashPanda

Bank counts money for the whole bank at the end of each

day, the bank may be able to quickly detect if something

does not add up. However, this does not mean that they

will know who is responsible. Conversely, if TrashPanda

So there are
risks... How do we
deal with them?

The core concept of defensive security is to take

things that are damaging and either make them

less likely or less impactful.

To better reason about this, we will look at several

capabilities that a defender often retains even

when attacked. Note that this is not an exhaustive

list, but these are the most common properties

that exist today, so deserve emphasis. The

capabilities we will discuss in detail are detection,

non-repudiation, recovery, and prevention.

Detection

Another important aspect is what is done when

an attack occurs. In the worst case, the attacker

could try repeatedly and the defender would

never realize an attack is occurring. This is

very common if the attacker can download and

run the defender’s software locally on their own

infrastructure because then the attacker can

experiment with a running copy of the system.

This is basically the norm for open source

software and is also common for proprietary

software.

If a system is attacked, ideally you’d like to know

it. This is where detection comes in. Detection

is any means by which you can know you’ve been

attacked. Common ways to know this involve

logging API calls, examining network traffic,

and looking for anomalous events by collecting

measurements of anything deemed as deviation

from standard system behavior.

Note that you need to carefully be able to argue why

you protect against a set of attacks. This includes in

what scenarios an attacker is prevented from doing

an action. Once again, being rigorous and clear about

limitations are absolutely key.

Aiming for Full
over Conditional
Prevention
Commentary by Justin Cappos

Some modern systems provide prevention of only

certain attacker actions, in only certain scenarios.

They may prevent information from being valuable

after a certain point of time or from a key from being

exfiltrated after a successful attack. (See HSMs, the

concept of perfect forward secrecy, and ephemeral

keys, as examples.) These properties are certainly nice

to have, but ideally you want full prevention as a goal.

Which of the prior
is the best?

A natural next thing to consider once you understand

the different means by which you can handle a

compromise, is whether there is an implicit order

so that prevention is always better than detection,

for example. It turns out that this is not always the

case. For example, suppose that TrashPanda Bank

could detect Eve embezzling a small amount of money.

Alternatively, they could have a means to prevent Eve

from doing so, but not detect her attempt. In this case,

TrashPanda Bank’s management may feel it is worth

the small financial loss to know Eve is unreliable and

fire / prosecute her.

To consider another example, let’s say that TrashPanda

has video recordings for all time, but never checks

them, then they will not detect problems well, but

when they do can figure out exactly what occurred.

Recovery

Once you know an attack has occurred, a major goal

is to get the attacker out of your system. In some

cases, this is very difficult. If an attacker gained the

ability to install software as root on your devices, for

example, then they could have installed basically any

software (rootkits, firmware, etc.) and so you may

need to start over.

Fortunately well designed systems usually have the

ability to securely recover from a compromise. Note

that it is common to assume that an attacker could

act as a man-in-the-middle for your users. So, if you

have a compromise of a system, you can’t securely

revoke or restore trust using the same key that was

compromised. So you will need users to leverage a

different key, perhaps using the root of trust, which is

compartmentalized and more privileged to securely

recover the system to a secure state

Recovery is a very important property to have.

However, in general, it isn’t possible to recover

in every case. After all, if every actor in a system

is compromised, it doesn’t seem possible to ever

move back to a state with a trustworthy root of trust

without starting anew.

Prevention

Another means to deal with an attack is simply

to prevent it from being effective. The previous

sentence, using the word “simply” is a bit misleading

because this is often one of the most difficult things

to do. Well designed systems have this property for

most types of attacks.

overwhelming if it is overly broad. If you can detect

problems, but cannot forensically trace the cause, it can

lead to a lot of extra work.

So, while it is not always true, in general:

Prevention

 >

Recovery

 >

Detection w/ Forensic Traceability

 >

Detection

 >

Forensic Traceability

Mitigation quality is important, but where you apply

them is more critical

Applying mitigations is usually not as simple as just

choosing a set of mitigations and applying them to parts

of your system. A common mistake that I see novice

system designers make is to focus more on the quantity

and type of security mechanisms added than focusing on

where and why. You need to reason about the goals your

system has and then figure out how to intelligently apply

mechanisms and controls to meet those goals.

To understand why, let’s go back to TrashPanda Bank

and think about their security. If they buy and deploy the

latest alarm system, but apply it to the manager’s snack

drawer instead of the bank vault, they will not get the

desired security benefits!

This also helps to explain why it is so important to design

security into a system from the start instead of trying to

bolt it on afterwards. If you don’t design things well from

the start, it is often impractical or even impossible to get

the security properties you want later... at least without

starting over.

Bank has a super alarm system that can detect when

the view of any sensor is blocked momentarily.

Unfortunately, TrashPanda Bank is set near a set of

cherry blossom trees and when the blossoms fall, they

block the sensors, leading to a ton of false alarms.

Suppose that TrashPanda set the alarm to automatically

ring the police when it was triggered. After being

summoned several times, the police are unlikely

to respond to alarms for TrashPanda in the future,

leading to the police ignoring an alarm on the vault.

So, in this case, the security system’s drawbacks may

actually degrade security.

Overprotection
Sometimes
Considered
Harmful
Commentary by Justin Cappos

While the example above is a bit silly, adding a security

mechanism does sometimes degrade security in

practice. It used to be thought that changing passwords

frequently was an important security practice. It

was later shown that this made users choose weaker

passwords, reuse passwords more often, and led

to companies providing more vulnerable means to

recover lost passwords.

However, this all being said, there is actually a practical

hierarchy of what defender’s capabilities are usually

preferable. Usually prevention is the best because it

actually stops the negative outcome from occurring

at all. Recovery is really, really important for all but

the most unlikely of events. Note that manual effort

for recovery is common which is often reasonable.

However, this implies that this also should be a rare

act to avoid overburdening the poor person who does

the recovery. Detection is important, but can be

From Graphs to
Guards:
Commentary by Marco De Benedictis

Attack Graphs capture the defenders’ mindset and

working process, and so are time-consuming and

require significant effort to generate to ensure

correctness and the completeness of the paths that an

attacker could exploit to achieve a potential goal.

We can understand if tactical security controls

are addressing the most relevant threats by cross-

referencing the attack graphs back to the proposed

mitigations. This can be practically achieved by

overlaying security countermeasures at each

individual step, and visually inspecting the branches

that aren’t properly covered by remeditations.

This visualization allows us to evaluate the

effectiveness of our security assessment, and to

surface the residual risks by identifying the branches

with insufficient security controls and suggesting

remediations that satisfy the greatest number of

branches at once, taking into account their ease of

maintenance, business requirements, and budget

implications.

A few more tips
about applying
mitigations

It is important to have a system that degrades

gracefully under attack. This means that an attacker

must compromise many parts of the system that are

well protected and compartmentalized from each

other in order to do substantial harm. So, think

of how to make a system that slowly loses security

properties as compromises occur, rather than one

that has only “secure” and “insecure” states.

Note that you need to consider lateral movement in a

system very carefully when thinking about a system

degrading gracefully. If the ability to do X gives one

the ability to do Y, then security does not degrade

gracefully with respect to these two. If you can only

get Y by obtaining the capability for X and Z (which

are compartmentalized), then you have actually

made the attacker’s life harder than compromising

X if their goal is Y.

Another really key thing to do is to protect all access to

something sensitive. (This concept is called complete

mediation.) If TrashPanda Bank has a well fortified

vault entrance with guards, etc. but has an unlocked,

unmonitored window in the vault, the attacker will

likely just use that. Violations of complete mediation

are extremely common in systems where security

was not designed in from the start. The reason is that

the defenders may be unaware of an inappropriately

secured action or be unable to secure some set of

actions due to design flaws.

Commentary by Andrés Vega

The collaborative outputs of threat modeling—

encompassing trees, matrices, and assessments—

serve as a unique bridge between traditional

offensive ‘red’ teams and defensive ‘blue’ teams into

a joint ‘purple’ team. These tools are instrumental

in simulating malicious attacks and conducting

penetration testing to uncover and address

security vulnerabilities, and in turn leverage the

results of those exercises to chart and sequence

defense improvements to be made. Such artifacts

constitute a body of knowledge that underpins the

collaborative efforts of ‘purple’ teams, which blend

the offensive and defensive tactics into a coherent,

feedback-rich sociotechnical system. By facilitating

close coordination and information sharing, these

resources empower teams to develop combinited

mitigation and remediation strategies effectively.

Blending
Offensive and
Defensive Security

ta
g

-s
e
c
u

r
it

y
a

s
s
e
s
s
m

e
n

t
s

ta
g

-s
e
c
u

r
it

y

The self assessment, while valuable in its own right, is

built upon by a joint security assessment that is done

with TAG-Security and project members.

There is also a process to help a project complete

a self assessment called the Security Pals process.

One or more Security Pals will effectively draft a self

assessment and then work with the project to validate

and refine it.

What is the
right time in a
project’s lifecycle
to do a security
assessment?

In an ideal world everyone would do a security

assessment of their project while forming the design in

order to ensure that the design will meet the security

goals. Most importantly, if you are designing a security

focused system, you need to understand what you are

trying to protect against. If you haven’t threat modeled

the system ahead of time, your design is very unlikely

to match your threat model well. This will lead to

insecurity as well as bad user experience in many

cases. So, at least some lightweight threat modeling in

the design phase is standard practice for organizations

that write security focused code.

In reference to a more formal assessment like a TSSA,

this can be done whenever it makes sense for the

project. As of the writing of this book, the TOC and

other CNCF guidelines currently have most of that

done around the time the project is accepted into

TAG-Security
Assessments

Here we discuss TAG-Security in the CNCF and the

way that the TAG-Security collectively decided to

do security assessments. This draws on experience

from many people in the community who do security

audits and assessments professionally. While the

original framework for this is based upon prior

work by the community, especially threat modeling

in the Secure Systems Lab at NYU and the SPIFFE /

SPIRE projects community assessment, it should be

noted that this document and process has benefited

from additions and improvements from dozens of

community members.

What is a TAG-
Security Security
Assessment?

A TAG-Security Security Assessment (TSSA), is as

the name might indicate, a security assessment.

However, it is specially tailored to be concerned

primarily with cloud native technologies, as that is

the purview of the CNCF. This includes distributed

systems that are designed to be highly available and

that can be deployed dynamically and elastically

at web scale. As such, it has an opinionated take

that is specific to this domain. For example,

since there tend to be many actors in cloud native

projects, this assessment process often uses threat

matrices. Whereas, threat matrices are less useful

for something with few actors like threat modeling

an Android application or a website.

There is a basic self assessment which is done by

projects to give a means for community feedback.

process involving review both from TAG-Security

and the project. This TSSA is also set up as a joint

assessment between a project (who are experts in the

specific project technology) and reviewers from TAG-

Security (many of whom are security experts). So the

parties need to work together to share information as

part of this process.

With the self assessment as groundwork, the

TAG-Security team is now ready to help guide the

assessment. The basic idea here is to flesh out the

threat model and the attack matrices, looking for

missing cases, hidden assumptions, and the like. This

process benefits greatly from continued input from the

project. The core reason is that with things like hidden

assumptions, it can be challenging to understand

exactly when they do not hold if you do not know the

area.

Challenging
Generalized
Assumptions

Commentary by Justin Cappos

When doing a security audit or assessment, I have often

said something like “why do you think that this property

is always true?” and then a project member has said

“well except for case X, it is always handled.” Then they

realize that case X is really important and could occur.

I’ve even had people then be very impressed and say

“I was impressed how Justin realized that case X was a

problem” where really that wasn’t the case. In fact, I may

not have known anything about case X. I just knew it was

important to question non-obvious assumptions and

see what breaks. Asking good questions is an important

security superpower that anyone can quickly learn.

into incubation, however these guidelines are

being revised currently.

In general, the earlier an assessment is done, the

more secure the project will be and the easier it

will be to adapt to any design or other changes

that are uncovered by the assessment. So, do

your best to start early!

What is the
process for
getting a
security
assessment?

The current detailed guidance for this process

is at TAG Security Assessments Guide available

on GitHub. This website is more rapidly refined

based upon community feedback and experiences

than this book. However, for completeness, we

will describe this process at a high level.

First, the process will differ a little bit whether the

project is an early stage (likely sandbox) project

or a later stage project with adoption already. An

early stage project will just do a self assessment

and then provide this to TAG-Security, either

by creating an issue or by asking to schedule a

presentation. This is meant to be lightweight for

all parties and give a means to get rapid feedback.

For projects that do not have the time or skills to

do a self assessment on their own, the Security

Pals process described in the next section helps

with this. In this case, an external party helps to

move your security assessment to a point where a

project gets a solid self assessment.

A later stage project, for example one looking to

advance in the CNCF, will go through a joint

https://github.com/cncf/tag-security/tree/main/assessments/guide

• This will not require maintainer interaction.

• If the project does want to interact at the

earliest stages, they may elect to prepare

a comprehensive 30-40min presentation

describing the function and characteristics

of the project undertaking a self assessment.

This presentation should include an

overview of the project and its architecture,

existing security practices and concerns,

and suggested security focus area

• A draft document for the self assessment can be

created in a fork of the repository. (This will be

submitted as a PR later.) This document should

have the Metadata portion at the top completed,

and placeholders for all of the sections.

Security Pals Stage
2: Understand the
Project Landscape
(~1-2 days effort)

A first step is for the Security Pals to understand the

overall project at a sufficient level of detail. In essence,

before doing more detailed security work, one should

understand:

• What the project does / how it is roughly used

• What parties perform actions (e.g., a sidecar,

central server, core project maintainer, etc.)

• What sort of actions are performed (e.g., collect

telemetry data, provide a query language for users,

release a new version of software, etc.)

• What is the project trying to achieve, mostly

related to security (e.g., only the organization

deploying the software should be able to access

PII, all versions of software that are loaded must

come from the core developer team)

• What the project is not trying to achieve, again

with security as a focus (e.g., stopping a malicious

insider from posting PII on social media).

How does the
Security Pals
process work?

The role of the Security Pals is to act as short-

term security-minded aid for projects that are not

primarily security-focused or do not currently have

the capacity, skillset, or available effort to complete a

self assessment document.

The focus of the Security Pal’s involvement will be on

guiding the project in completing a Self Assessment

that evaluates their security posture. This can be

done with minimal work from the project.

The Security Pals will also provide guidance and

insights to assist these projects in jump-starting

their security considerations and improve this self

assessment across various channels, including

Github, Slack, and synchronous TAG Security

meetings.

The overall commitment from the Security Pal, as

a TAG member, will be approximately two weeks

per project. However, this time will vary by the

complexity of the project being examined. A Security

Pal may work alone or work on a team with other

Security Pals.

Security
Pals Stage 1:
Preparation (<1 day
effort)

• One or more Security Pals are identified and a

GitHub issue is created / updated.

• The Security Pal should review existing

information and documentation about the

project in the form of prior KubeCon talks,

webpages, project documentation, etc.

https://github.com/cncf/tag-security/blob/main/assessments/guide/self-assessment.md

self-assessment, this can help to point out areas where

the self assessment needs to be further refined. Other

models like STRIDE, etc. may also be useful here.

Note that this stage can safely be divided by different

Security Pals who work together. So, perhaps one Security

Pal could focus on Project Compliance and Secure

Development, another could do Security functions and

features, and a third could complete Self assessment use,

Security issue resolution, and the Appendix.

Security Pals Stage
4: Iteration with the
project (~2-3 days
effort)

At this point, the Security Pals need interactions with

the project to further refine the document and resolve

points which need clarification. This will consist of a few

rounds of iteration where project maintainers provide

further information which makes its way into the self

assessment.

The real goal of this process is to accurately document

the project’s state. Ideally the project will also fix

documentation issues that arose during the self

assessment process, but the focus on the Security Pals

is on getting this clarity, instead of pushing for security

changes. (Those changes and recommendations are

handled in the joint assessment which comes after this

process.)

Note, this process usually will go in multiple rounds. For

example, suppose we have the following line in the self

assessment:

	 The	Flibble	project’s	development	process	protects

the	key	used	to	sign	a	new	version	of	the	Flibble	sidecar.

(How?)

Security Pals
Stage 3: First
complete draft
of the Self
Assessment (3-5
days effort)

At this point, the Security Pals should have a rough

idea of the security goals, non-goals, actors, and

actions. Now it is time to make a pass over the

remaining sections with the existing context.

• Self assessment use

• Security functions and features

• Project compliance

• Secure development practices

• Security issue resolution

• Appendix

Note that it is a good practice to link back to the

documentation when describing why a certain

item is believed to be true. This is especially

important so when the project does a later

examination of this step, if they disagree or need

to clarify something, they know where to do so.

So, repeatedly link back to project documentation.

Another key item to do here is to indicate when

information is not known. For example, it is fine

to write lines like this:

	 The	Flibble	project’s	development	process	

protects the key used to sign a new version of the

Flibble	sidecar.	 (How?)

Those will be resolved in the next stage.

It may be useful for the Security Pals to perform a

Lightweight Threat Model based on this template.

While this will not be checked in as apart of the

http://protects the key used to sign a new version of the Flibble sidecar
http://protects the key used to sign a new version of the Flibble sidecar
http://notavalidurl.io/
http://notavalidurl.io/

example, if you just say “The flibble server stores data

into the flibble database.”, it is very underspecified.

Is there more than one flibble server in the world?

Is there more than one flibble database? Does the

database trust the server? If there are multiple servers

or databases, are they isolated from each other (and

if so how?) or does a compromise impact all of them?

How does the flibble database authenticate the flibble

server (and vice versa)?

Security Pals Stage
5: Finalization (1
day)

At this stage the Security Pals are ready to finalize this

effort. There are two main things that need to be done.

The first is to present their findings. There are several

appropriate audiences for this and the Security

Assessment Facilitator can help to guide which

outcome is most desirable.

• Present to the project maintainers (likely 20-

40 mins). The self assessment is a good topic

for a project’s community meeting or similar.

Developers from the project should be able to help

to find and fix errors in the document. This may

also help the project become better aware of which

issues they should prioritize moving forward.

• Present to the Security TAG in the CNCF (likely

~20-25 mins). This will help get more review from

security experts and likely lead to parties who are

interested in the joint assessment being recruited.

The second and final step involves the self assessment

PR being submitted for approval to the Security

Assessment Facilitators for approval. At this point, a

facilitator can merge the PR (adding the self assessment

to the repository) and close the Security Pals Issue. At

this point the self assessment is now finished,

One of the project personnel may clarify that the

key is stored in an HSM on the build server which is

only accessible to maintainers. A revised statement

might look like this:

 The	Flibble	project’s	development	process	

uses an HSM on the build server to protect the key

used	to	sign	a	new	version	of	the	Flibble	sidecar. Only

maintainers have access to the build server (want

to link to updated docs). (How does the build server
authenticate maintainers? Is there logging to see when
the key is used / who logs in? How do the systems that
check the build server’s key know they have the correct
one?)

And after more clarification, the self assessment

document may look like this:

 The	Flibble	project’s	development	process

uses an HSM on the build server to protect the key

used	to	sign	a	new	version	of	the	Flibble	sidecar. Only

maintainers have access to the build server, which is

enforced manually by a system administrator, which

is currently the maintainer Bob.		MFA	required	for	all	

maintainers, following NIST SP800-63B password

guidelines,	including	requiring	either	a	hardware token

or authenticator app. Logins by maintainers and uses

of the HSM key are not logged in any way currently. It

is	not	possible	to	tell	which	maintainer’s	account	used	

the key after this occurs.

Systems performing a software update have the

public key of the build server added to the image at

creation time, which serves as the root of trust for this

verification.	 It is assumed that the build server always

provides the latest version of a software image, but this

is	not	verified.

The level of specificity is really important here. For

example, do not forget to indicate which actors are

unique and which can have multiple instances. For

http://notavalidurl.io/
http://notavalidurl.io/
http://process uses an HSM on the build server to protect the key used to sign a new version of the Flibble
http://process uses an HSM on the build server to protect the key used to sign a new version of the Flibble
http://process uses an HSM on the build server to protect the key used to sign a new version of the Flibble
http://Only maintainers have access to the build server, which is enforced manually by a system administrat
http://Only maintainers have access to the build server, which is enforced manually by a system administrat
http://Only maintainers have access to the build server, which is enforced manually by a system administrat
http://Only maintainers have access to the build server, which is enforced manually by a system administrat
https://pages.nist.gov/800-63-3/sp800-63b.html
http://hardware token
http://Systems performing a software update have the public key of the build server added to the image at c
http://Systems performing a software update have the public key of the build server added to the image at c
http://Systems performing a software update have the public key of the build server added to the image at c
http:// It is assumed that the build server always provides the latest version of a software image
http:// It is assumed that the build server always provides the latest version of a software image

frequency and severity of security issues encountered

by users.

Not only does this effort contribute to a stronger, more

secure open source ecosystem, but it also enhances the

project’s reputation for reliability and trustworthiness

among users. In the long run, the initial investment of

time pays dividends, safeguarding your future attention

bandwidth and ensuring that the community’s trust is

well placed.

How to work with
TAG-Security on a
joint assessment

The most important thing is to be open minded and set

aside some time to work with us. This is not the kind

of process where you can simply sit and write a certain

number of words or know you need to put in X hours and

then it will be done. Even the self assessment phase is

not predictable as it would be to fill out a questionnaire.

While the process is designed not to be onerous for

either us or you, depending on what is found in the

process, the number of hours can vary dramatically. I

have seen some assessments take only 5 or so hours from

the project team, while others have taken more than 40

hours of work.

The most important tips are as follows:

First, do a thorough job on your self assessment. This

is not the place to do the bare minimum as doing so

will certainly create extra work later. Being sloppy will

usually require some portions that looked like they were

completed, to be revisited. This is demoralizing because

it seems then like the goalposts are getting further

away, rather than closer. So, starting with a solid self

assessment really helps everyone scope the work and

have the right problems / thoughts in mind when

approved by the project, and the project is ready

for the joint assessment to begin!

Getting Going
Commentary by Andrés Vega

For open source maintainers, the tide of incoming

work is relentless. The flow of community

interactions—ranging from comments and

feature requests to pull requests from new

contributors—often redirects their efforts

away from coding to administrative tasks like

triaging issues and vetting contributions. This

deluge of responsibilities can make it difficult for

maintainers to remain responsive and carve out

time for additional tasks, which can be daunting

when their plates are already full.

The prospect of undertaking what appears to be

additional work, such as a security assessment,

can seem particularly daunting amid these

constant demands. For many, it feels like yet

another steep hill to climb when their bandwidth

is already stretched thin. However, many

maintainers find that collaborating with the TAG

Security group to formalize and scrutinize their

security posture is not as time-consuming as

anticipated.

Starting the process by simply documenting

the known aspects of the project can be an

unexpectedly smooth and satisfying experience.

Working alongside TAG Security and Security Pals

to refine this document can shift the daily grind

to a proactive stance against security threats. Far

from being an extra burden, this partnership

can streamline the project’s defenses and lead

to substantial long-term benefits. By tightening

security measures proactively, projects can

become more resilient, ultimately reducing the

are often some of the best assessors as well!

A Health Check and
Path to Enhanced
Security
Commentary by Ash Narkar

The TAG Security assessment process really helped

the OPA team understand the overall health of the

project from a security perspective. The assessment

identified areas of the project that could be improved

for example better documentation around secure

deployment practices, enhancing OPA’s toolchain

usability to reduce policy authoring related errors. The

OPA project benefited from the recommendations and

advice provided by the security experts at TAG Security

and our on-going relationship with TAG Security helps

us gain insights into the latest security best practices

thereby allowing us to continuously improve OPA’s

security posture.

Value Exceeding
Expectations
Commentary by Andrés Vega

I was skeptical at first about what the assessment could

provide in value. The project had been meticulously

designed, we knew our system well. It seemed more

like a hassle than a benefit, a mere formality we had to

endure for the CNCF to rubber stamp our project as

‘mature.’ But I was in for a surprise.

An assessment does more than just test your system; it

tests your beliefs about it. It confronts you with the hard

truths about what you assume is failsafe. It questions

what you’ve taken for granted and often proves you

wrong where you least expect it. The process can

prompt you to rethink system design evaluate trade-

offs differently, and may lead to changes in your build,

working.

Second, chat informally with folks on the security

assessment team as things come up. Most of us,

while having other full time jobs, are happy to answer

questions and guide the work in the right direction

from the earliest stages. So, don’t feel like you need

to only check in or ask things when you have a huge

deliverable to send. Ask focused questions if you

need to and feel free to show intermediate work

products.

Third, plan for the assessment to take a small to

medium effort over a longer time period. A TSSA, like

all security assessments, requires thought. It just

isn’t possible to cram one in over a two day sprint and

feel confident in the result. (Just like writing a term

paper at 4AM isn’t going to be your best work.) So,

start the process early, take breaks for feedback, and

expect to iterate a bit as you and the team assessing

your project gain greater understanding.

Finally, have some patience with the TAG-Security

team doing the assessment. We are volunteering our

time to help to try to make your project as secure

as possible. This will lead to more adoption and

ultimately improve it overall. So, please bear with

us when we ask a “dumb question” which implies we

don’t understand part of your project or need a few

days to read the 15 page or longer document you sent.

We’re all on the same team here!

Also, one more ask of you once you finish the

assessment process is to help us assess another

project by participating in the TSSA process as a

reviewer, if possible. It usually takes 4-5 folks from

TAG-Security to do an assessment. Having some

participation from project members of projects

we have assessed helps to scale this. Their past

experience going through the process means they

questions phase) of the project.

3. All reviewers perform a review at this point and

try to collect their thoughts in three categories:

clarifying questions, feedback for the project, and

feedback for the TOC. The lead security reviewer

or their designee, with the assistance of the security

reviewers will create a draft summary document

to capture existing comments, feedback, and

recommendations.

4. The reviewers may optionally perform a hands-on

review.

5. The reviewers and project team meet to discuss the

joint assessment and clear up any disagreements.

Once the review is complete, the project team

presents the joint review to the TAG-Security

community.

For a detailed view of the process, the key roles and the

outcome, please refer to the Assessments Guide on the

TAG Security GitHub repository.

What if I disagree
with part of a joint
TSSA?

First and foremost, discuss disagreements with the

assessment team. In almost all cases, disagreements

can be resolved this way. If not, then adding the TSSA

Facilitator may be useful.

If it cannot be resolved even then consider that

intentionally, the TSSA is set up to have different “final

writers” for different parts of the document. The self

assessment document is the purview of the project.

While someone from TAG-Security may disagree, you

control that part of the document and can write as you

please. Conversely, TAG-Security controls the README.

md of the document. So, in this place they can put their

recommendations, thoughts, and counterpoint to a

disagreement between the groups.

test, and deployment strategies. It can reshape

the organization of your team and, most

importantly, enhance your comprehension of the

system. The end result? A palpable improvement

in the quality, security, and safety of the work you

produce.

For the SPIFFE and SPIRE projects, undergoing

this scrutiny not once but twice was illuminating.

The analysis flagged valuable security

enhancements for SPIRE and other SPIFFE

initiatives and offered a trove of knowledge for

end users and implementers. The assessments

also serve as a learning tool, offering a dual

perspective that encompasses both architectural

understanding and a viewpoint that combines

defense with offense.

Beyond the technical gains, assessments are a

catalyst for community building. They foster

teamwork, networking, and camaraderie among

security professionals through the exchange of

insights during threat modeling sessions. They

remind us of the importance of feedback loops

and external viewpoints, especially in a field

where tunnel vision on immediate tasks can lead

to an insular outlook.

The high level process of TSSA, which can be

described as follows:

1. The project should open an issue for a joint

review by creating an issue in the TAG-

Security GitHub

2. Upon receiving the joint review request, TAG-

Security’s members expressing their interest

to participate as reviewers and makes the

conflict of interest statement

3. The lead security reviewer will now perform

an initial clarifying pass (also called the naive

https://github.com/cncf/tag-security/tree/main/assessments/guide#security-review-package-steps

Bring Your
Beginner’s Mind: Be
Inquisitive
Commentary by Justin Cappos

A natural question is what domain-specific technical

skills you need to have to perform a joint assessment.

Honestly, so long as you have a basic technical

understanding in the domain (similar to someone

getting started with the technology), that may be enough

to be an observer on an assessment. Security acumen

is much more important than domain knowledge

when doing an assessment. In my experience teaching

security to over a thousand students, security acumen

is something anyone can learn. It is also something

that some students just intuitively understand from

the start. Without trying, you will have a hard time

knowing if you have a natural knack for security or

whether it will take a little work to learn, but you can

definitely get there!

There are four levels of participation in a TSSA:

• Observer: This is someone who will attend

the meetings, lurk in the slack channel for the

assessment, and read the document. However, this

person has no actual responsibilities as it relates to

the assessment. Hence, they just watch the process

without being asked to intervene. However, if they

have a question or observation, they should voice

it. The intent of providing no responsibilities isn’t

to silence the observer. It is to enable them to not

feel pressured that they must speak or act for the

assessment to be successful.

• Reviewer: A reviewer is an active party in the

security assessment process. They will give

feedback on documents, chat with the project

members doing the assessment, attend meetings,

and the like. They do the heavy lifting from the

TAG-Security side in order to make sure that the

The best way to handle this is to stick to factual

statements. Stating that “project X loses security

property Y when Z happens” is a factual statement

that hopefully both parties can agree on whereas

statements like “project X is secure.” or “Z is a huge

problem” are more subjective and likely to inflame.

What happens when
your TSSA becomes
out of date?

Projects are rarely static. New features are added,

new interfaces grow, subsystems diverge or

converge, and on occasion technical debt is paid.

When changes happen, it would be ideal to update the

TSSA at the same time. Fortunately, unlike a security

audit, security assessments persist in validity over a

long period of time. Unfortunately, this means they

are often relied on when portions are stale.

To update a TSSA, simply open an issue on TAG-

Security and suggest the changes that should

be made. The follow on process will be more

lightweight because the new assessment can focus

on the changed items.

How to volunteer
in TAG-Security to
do a TSSA

The process is designed to help people of different

levels of skill gain experience and perform an

assessment together. Over time as people level

up and get more experience and comfort, they are

ready to take on added responsibility as part of the

assessment process.

case, circumstances, or be palatable to your risk

tolerance.

Read through the threat matrix and think how likely the

compromise cases are in your scenario. Is there strong

isolation between actors or is there a lot of lateral

movement potential? Many distributed systems have a

single point of failure (or many single points of failure)

because they fail to compartmentalize trust adequately.

If this is true in your case, the risk is very high.

Look at the security practices the project uses for bug

disclosures, code review, testing, etc. This can give

you an idea of the security emphasis and expertise of

the group. Some things to look for are: the amount of

test code coverage, the way in which code is admitted

into the process, the way in which dependencies are

vetted and kept up-to-date, and the amount of security

expertise of the group. Also looking at past security

audits (if they exist) can be very illuminating.

Balancing
Coverage
Expectations
Commentary by Justin Cappos

For test code coverage, a natural initial thought is that

the closer to 100% you are, the better off the project is.

I have even heard managers say that people should not

ship code if it is below a specific threshold (95%, 99%,

etc.).

My experience is that shooting for a fixed target across

projects is too rigid. Some code is really unreasonable

to test. For example, a project with a lot of error

handling code that aborts during hardware failures, may

be difficult to test in a good way. Different languages

and frameworks can also make getting a high degree of

test code coverage very challenging. In these cases you

get almost all of the benefit from the first 9X% or so of

assessment is rigorous, timely, and accurate.

• Lead reviewer: The lead for an TSSA is the

person directly responsible from the TAG-

Security side. They recruit reviewers and

observers, will divide up the work amongst

the reviewers, and act as an active reviewer

themselves. In practice, this party is almost

always a party that has been a reviewer on

one or more assessments before.

• TSSA Facilitator: This is the party at TAG-

Security who helps to prioritize the order of

assessments, recruit a lead reviewer and other

reviewers, ensure uniform quality of TSSA

assessments, and similar tasks to manage the

overall TSSA queue. The TSSA Facilitator is

also the POC for interactions with the CNCF

TAG and other external organizations.

So, someone who does not have a security

background, may be most comfortable as an

observer role at first. For one with some security

experience, acting as a reviewer makes the

most sense. Leads are usually chosen from top

performing reviewers by the TSSA Facilitator.

How to use an
assessment
(from TAG-
Security and
anywhere else)

Suppose you are deciding whether to trust a

security project, how does a security assessment

help you do this?

Look carefully at the goals of the project and the

scenario they evaluated the project in. Do the

goals and scenarios match your use case? I f not,

you may have a serious problem because little of

the rest of the analysis may be relevant in your

red flags
Commentary by Justin Cappos

There are a lot of red flags to look for when looking at

a project:

A lack of threat modeling: I’ve spoken with engineers

at major tech companies that were making security

technology and asked them what the technology was

supposed to protect against. Multiple times, across

different companies and products, I’ve had them say

that they will figure the threat model out after they

finish building it. This is a huge red flag because if

you don’t understand what you are trying to protect

and from which attacks, how can you hope to do so?

Fortunately, this is a small minority of people at these

companies, but still it is a telling problem.

Viewing security mechanisms as features: Another major

mistake I’ve seen made is that some developers seem

to feel that adding a security mechanism is just a piece

of functionality you can bolt on at the end. In other

words, you could just add AES encryption to a system

and then just say “I use AES” and then your system

would be secure because AES (with reasonable key

sizes) is thought to be secure today. Unfortunately,

like putting a bike lock on a bicycle, it really matters

where you put the lock. If you just attach it to the seat,

the lock really isn’t doing anything. So, security isn’t

something you can just defer until later. You need to

design for security as early as possible.

A general lack of understanding of security by the security

team. Occasionally, even in major companies, you will

encounter folks that clearly misunderstand very basic

concepts about security. While no one was born with

deep security knowledge, a lack of understanding

needs to be coupled with a desire to learn. Someone

on the team needs a generally strong understanding of

security. I’ve done security designs

test case coverage. Often the last bit of testing just

isn’t worth it compared to the other things you could

be spending your time fixing and improving.

The code admission process for dependencies should

at a minimum look at the sorts of aspects you would

look at in any software project. How clean and well

tested is the code? How quickly do the maintainers

respond to issues? What sorts of issues are raised?

Is security a priority? What is the release cadence?

Is disclosure and documentation around fixes

provided in a clear manner? How big and diverse

is the contributor base? Do they seem to often take

upstream contributions? Are those contributions

vetted appropriately?

Does the project group demonstrate strong security

expertise? Do they have a clearly stated threat

model? Are the actors and actions for the project

clear? Are actors appropriately compartmentalized?

Have they described why their security mechanisms

are in place and what they are supposed to protect

against?

Has the project had a security audit? How did it go?

Note that just counting the vulnerabilities discovered

isn’t necessarily a great metric as different auditors

put different weight on the same issue. However,

you should be concerned if a lot of serious issues

were found, even if those were later addressed.

Remember, since this is just one perspective from

one moment in time, a project that fixes issues from

an audit does not give a strong indication that further

bugs do not exist now. So, be sure to check whether

they have also improved their security practices.

known weaknesses. As security technologies age, the

community gets more experience attacking them. It

is important to understand the known limitations of

technologies when designing new systems. For a first

example, X.509 certificates parsing errors are commonly

used by attackers to bypass security protections in a

system. Using a format like X.509 or JWT leads to a

lot of security issues due to the complexity of parsing

[HackerNews: Do not use JWTs, Medium: Hacking JWT

: Exploiting the “none” algorithm, Exploit Database:

wolfSSL 3.10.2 - x509 Certificate Text Parsing Off-by-

One, SuSE: Security vulnerability: openssl 3 certificate

parsing buffer overflow CVE-2022-3602]. As another

example, technologies like revocation via OCSP and CRL

also have huge drawbacks in practice [DarkReading:

Solving The SSL Certificate-Revocation Checking

Shortfall]. These technologies are not used in modern

browsers [Chromium: CRLSets, Mozilla Firefox: Remove

CRL User-Interface, Certificate Revocation in Microsoft

Edge], despite being designed specifically for this use

case! If a project doesn’t seem to understand the security

risks and limitations of outdated technology, then this

should be a major concern.

Over-reliance on reinventing the wheel. Some developers

just like to invent things and don’t want to use tools

or techniques from elsewhere. This is particularly

problematic in security. You should be using the designs

that have held up to stringent review unless there is a

clear reason to create something new. Reinvention

raises new opportunities to make mistakes and introduce

vulnerabilities.

A lack of awareness of other technologies. A major indicator

that a project doesn’t understand security is a lack of

awareness of the pros and cons of other solutions in the

space. If someone does not seem to understand what

the differences are between competing approaches, they

likely do not understand the threat landscape or problem

domain either. While closed source, commercial

with domain experts in fields where I am not

an expert (like automotive). As long as folks are

willing to learn and discuss problems openly,

this can work out well. Someone with a security

skillset needs to be involved with design. If you

are not overly comfortable with security and

don’t know how to judge the group’s design(s),

then ask other experts to take a look. If they

have published the work in a reputable academic

venue, then the academic peer review process

is another way to ensure that review from other

experts has happened.

Over-reliance on standards. Except for the

excellent cryptographic standards from NIST

which were done by a competitive process, most of

the security designs through other organizations

(ISO, IETF, IEEE), are historically very hit and

miss. (Note, I am saying this as someone with

projects that have been standardized through

different organizations.) Anyone accepting

standardization as a strong indicator of quality,

does so at substantial risk. Many protocols and

projects with a very poor security history (e.g.,

RFC 7519) were standardized through these

organizations. Looking at the security analysis of

a technology is a much stronger indicator.

Over-reliance on branding. Similar to over-

reliance on standards, some people seem to feel

that if it comes from company X, it will be great.

While I’ve seen many excellent things come

from top 5 tech companies, I’ve also seen them

release some horribly insecure technologies.

Every company has hits and misses. Don’t be too

quick to jump on the bandwagon. As before, peer

review by experts is a much stronger indicator

than a brand name.

Over-reliance on outdated technology that has

https://news.ycombinator.com/item?id=16159301
https://medium.com/@phosmet/forging-jwt-exploiting-the-none-algorithm-a37d670af54f
https://medium.com/@phosmet/forging-jwt-exploiting-the-none-algorithm-a37d670af54f
https://www.exploit-db.com/exploits/41984
https://www.exploit-db.com/exploits/41984
https://www.exploit-db.com/exploits/41984
https://www.suse.com/support/kb/doc/?id=000020837
https://www.suse.com/support/kb/doc/?id=000020837
https://www.darkreading.com/authentication/solving-the-ssl-certificate-revocation-checking-shortfall
https://www.darkreading.com/authentication/solving-the-ssl-certificate-revocation-checking-shortfall
https://www.darkreading.com/authentication/solving-the-ssl-certificate-revocation-checking-shortfall
https://www.chromium.org/Home/chromium-security/crlsets/#:~:text=Online%20(i.e.%20OCSP%20and%20CRL,is%2C%20of%20course%2C%20public.
https://wiki.mozilla.org/CA/History_of_Revocation_Checking#Remove_CRL_User-Interface
https://wiki.mozilla.org/CA/History_of_Revocation_Checking#Remove_CRL_User-Interface
https://textslashplain.com/2022/08/01/certificate-revocation-in-microsoft-edge/
https://textslashplain.com/2022/08/01/certificate-revocation-in-microsoft-edge/

patch bugs and address security issues across large

fleets of images exponentially faster. At the time it

was suggested for the project to continue the effort to

document its build system and security practices.

Harbor: Users need to still do a review of the resulting

security properties given the way they deploy it. The

mechanisms are all there for strong security, but

there are concerns that it is not being deployed in that

manner by some adopters.

in-toto: in-toto provides software supply chain

security by validating cryptographically protected

metadata about the process. At the time of assessment,

the documentation around getting started, usability,

and best practices were thought to be inadequate for

some adopters.

Open Policy Agent: The project fills an important role

in the ecosystem by providing a common language for

security policies. A lot of the concerns raised here

revolve around understandability and usability of the

policies that are created. It seems non-trivial to write

secure and correct policies and if a failure happens in

this case, the resulting system may not be secure.

SPIFFE / SPIRE: This project handles secure

provisioning and management of key materials in

heterogeneous cloud and on prem environments.

The README is very positive and only lists some

minor TODOs for the team in different areas. Their

assessment indicates they have a single (trusted)

server and that there are some risks with their agent

implementation. However, the project seems to

have a good understanding of this and has worked to

minimize the risk from these components.

can be difficult for outsiders to understand, for well

documented, public systems, you should be able to

get a clear description of the differences.

How to use a
TAG-Security
Assessment

TAG-Security Assessments are structured in a way

that is intended to make them easier for an adopter

to read. Most importantly, strongly consider the

recommendations in the README listed by TAG-

Security. These will point out the points that TAG-

Security’s reviewers believe are most concerning

from a security standpoint.

The project’s self assessment is also valuable

because it describes how the project sees itself and

its security posture. Consider carefully the scope of

their threat model. Is it better for a logging system

to have a flawed system which sometimes fails to

sanitize personal information or to never try to

sanitize it at all? The answer could go either way.

Counterintuitively to some people, if users of the

logging system expect its sanitization to be perfect

and then use it in situations where they otherwise

wouldn’t, its existence can certainly harm security.

Here are some example assessments and some quick

notes a reader would likely take from them. Note,

that these reflect the assessment at the time it was

completed. The project may have addressed the

described issues in the interim.

Buildpacks: Buildpacks possess stronger security

guarantees when compared to ecosystem alternatives

by leveraging underutilized security capabilities

in Open Container Initiative’s Image Specification.

Additionally, given buildpacks “in-place upgrade

capabilities”, buildpacks can shorten the time to

https://github.com/cncf/tag-security/tree/main/assessments/projects/harbor
https://github.com/cncf/tag-security/tree/main/assessments/projects/in-toto
https://github.com/cncf/tag-security/tree/main/assessments/projects/opa
https://github.com/cncf/tag-security/tree/main/assessments/projects/spiffe-spire
https://github.com/cncf/tag-security/tree/main/assessments/projects/buildpacks
https://opencontainers.org/
https://github.com/opencontainers/image-spec

c
o

n
c
l
u

d
in

g
t
h

o
u

g
h

t
s

c
o

n
c
l
u

d
in

g

Concluding
Thoughts

Congratulations on making it through this

book. So now, dear reader, you are equipped to

understand and assess the security of complex

software projects. We hope that you will use

your skills to improve the security of the cloud,

software projects, or even brick-and-mortar

institutions like TrashPanda Bank.

Everyone is relying on your efforts to make the

world a safer place!

